Empirical Gramian-based spatial basis functions for model reduction of nonlinear distributed parameter systems
暂无分享,去创建一个
[1] I. Postlethwaite,et al. Truncated balanced realization of a stable non-minimal state-space system , 1987 .
[2] Thomas F. Edgar,et al. An improved method for nonlinear model reduction using balancing of empirical gramians , 2002 .
[3] Ibrahim Sadek,et al. Optimal control of a parabolic distributed parameter system via orthogonal polynomials , 1998 .
[4] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[5] Mian Jiang,et al. Optimal combination of spatial basis functions for the model reduction of nonlinear distributed parameter systems , 2012 .
[6] Mian Jiang,et al. New spatial basis functions for the model reduction of nonlinear distributed parameter systems , 2012 .
[7] Dieter Armbruster,et al. Phase-space analysis of bursting behavior in Kolmogorov flow , 1992 .
[8] J. M. A. Scherpen,et al. Balancing for nonlinear systems , 1993 .
[9] Nadine Aubry,et al. Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..
[10] Minghui Huang,et al. Online Spatiotemporal Least-Squares Support Vector Machine Modeling Approach for Time-Varying Distributed Parameter Processes , 2017 .
[11] Jigang Wu,et al. A precision on-line model for the prediction of thermal crown in hot rolling processes , 2014 .
[12] Frank Kwasniok,et al. Optimal Galerkin approximations of partial differential equations using principal interaction patterns , 1997 .
[13] A. Chatterjee. An introduction to the proper orthogonal decomposition , 2000 .
[14] Minghui Huang,et al. A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process , 2016, IEEE Transactions on Industrial Informatics.
[15] Leonidas G. Bleris,et al. Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions , 2005, Comput. Chem. Eng..
[16] S. Narasimhan,et al. Order reduction and control of hyperbolic, countercurrent distributed parameter systems using method of characteristics , 2014 .
[17] Han-Xiong Li,et al. Dynamic switching based fuzzy control strategy for a class of distributed parameter system , 2014 .
[18] B. Haasdonk,et al. REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .
[19] J. Marsden,et al. A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .
[20] Saeed Kazem,et al. Optimal control of a parabolic distributed parameter system via radial basis functions , 2014, Commun. Nonlinear Sci. Numer. Simul..
[21] Panagiotis D. Christofides,et al. Special issue on ‘control of complex process systems’ , 2004 .
[22] M. Willis,et al. ADVANCED PROCESS CONTROL , 2005 .
[23] C. L. Philip Chen,et al. Multi-variable fuzzy logic control for a class of distributed parameter systems , 2013 .
[24] Antonios Armaou,et al. Control of Multiscale and Distributed Process Systems , 2005, Comput. Chem. Eng..
[25] Davood Babaei Pourkargar,et al. Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients , 2013 .
[26] Chang Liu,et al. Online Spatiotemporal Extreme Learning Machine for Complex Time-Varying Distributed Parameter Systems , 2017, IEEE Transactions on Industrial Informatics.
[27] H. M. Park,et al. Low dimensional modeling of flow reactors , 1996 .
[28] Antonios Armaou,et al. Computation of empirical eigenfunctions and order reduction for nonlinear parabolic PDE systems with time-dependent spatial domains , 2001 .
[29] Stevan Dubljevic,et al. Order‐reduction of parabolic PDEs with time‐varying domain using empirical eigenfunctions , 2013 .
[30] Zhou Huai-chun,et al. Development of a distributed-parameter model for the evaporation system in a supercritical W-shaped boiler , 2014 .
[31] Han-Xiong Li,et al. A novel neural internal model control for multi-input multi-output nonlinear discrete-time processes , 2009 .
[32] H. Park,et al. The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .
[33] Shaoyuan Li,et al. Time/Space-Separation-Based SVM Modeling for Nonlinear Distributed Parameter Processes , 2011 .
[34] Frank Kwasniok,et al. The reduction of complex dynamical systems using principal interaction patterns , 1996 .
[35] Davood Babaei Pourkargar,et al. Geometric output tracking of nonlinear distributed parameter systems via adaptive model reduction , 2014 .
[36] Panagiotis D. Christofides,et al. Optimal control of diffusion-convection-reaction processes using reduced-order models , 2008, Comput. Chem. Eng..
[37] Guanrong Chen,et al. Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.
[38] Han-Xiong Li,et al. Data-based Suboptimal Neuro-control Design with Reinforcement Learning for Dissipative Spatially Distributed Processes , 2014 .
[39] Shaoyuan Li,et al. A fuzzy-based spatio-temporal multi-modeling for nonlinear distributed parameter processes , 2014, Appl. Soft Comput..
[40] P. Christofides,et al. Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .