Empirical Gramian-based spatial basis functions for model reduction of nonlinear distributed parameter systems

ABSTRACT Correct selection of spatial basis functions is crucial for model reduction for nonlinear distributed parameter systems in engineering applications. To construct appropriate reduced models, modelling accuracy and computational costs must be balanced. In this paper, empirical Gramian-based spatial basis functions were proposed for model reduction of nonlinear distributed parameter systems. Empirical Gramians can be computed by generalizing linear Gramians onto nonlinear systems, which results in calculations that only require standard matrix operations. Associated model reduction is described under the framework of Galerkin projection. In this study, two numerical examples were used to evaluate the efficacy of the proposed approach. Lower-order reduced models were achieved with the required modelling accuracy compared to linear Gramian-based combined spatial basis function- and spectral eigenfunction-based methods.

[1]  I. Postlethwaite,et al.  Truncated balanced realization of a stable non-minimal state-space system , 1987 .

[2]  Thomas F. Edgar,et al.  An improved method for nonlinear model reduction using balancing of empirical gramians , 2002 .

[3]  Ibrahim Sadek,et al.  Optimal control of a parabolic distributed parameter system via orthogonal polynomials , 1998 .

[4]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[5]  Mian Jiang,et al.  Optimal combination of spatial basis functions for the model reduction of nonlinear distributed parameter systems , 2012 .

[6]  Mian Jiang,et al.  New spatial basis functions for the model reduction of nonlinear distributed parameter systems , 2012 .

[7]  Dieter Armbruster,et al.  Phase-space analysis of bursting behavior in Kolmogorov flow , 1992 .

[8]  J. M. A. Scherpen,et al.  Balancing for nonlinear systems , 1993 .

[9]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[10]  Minghui Huang,et al.  Online Spatiotemporal Least-Squares Support Vector Machine Modeling Approach for Time-Varying Distributed Parameter Processes , 2017 .

[11]  Jigang Wu,et al.  A precision on-line model for the prediction of thermal crown in hot rolling processes , 2014 .

[12]  Frank Kwasniok,et al.  Optimal Galerkin approximations of partial differential equations using principal interaction patterns , 1997 .

[13]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[14]  Minghui Huang,et al.  A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems With Applications to Curing Thermal Process , 2016, IEEE Transactions on Industrial Informatics.

[15]  Leonidas G. Bleris,et al.  Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions , 2005, Comput. Chem. Eng..

[16]  S. Narasimhan,et al.  Order reduction and control of hyperbolic, countercurrent distributed parameter systems using method of characteristics , 2014 .

[17]  Han-Xiong Li,et al.  Dynamic switching based fuzzy control strategy for a class of distributed parameter system , 2014 .

[18]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[19]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[20]  Saeed Kazem,et al.  Optimal control of a parabolic distributed parameter system via radial basis functions , 2014, Commun. Nonlinear Sci. Numer. Simul..

[21]  Panagiotis D. Christofides,et al.  Special issue on ‘control of complex process systems’ , 2004 .

[22]  M. Willis,et al.  ADVANCED PROCESS CONTROL , 2005 .

[23]  C. L. Philip Chen,et al.  Multi-variable fuzzy logic control for a class of distributed parameter systems , 2013 .

[24]  Antonios Armaou,et al.  Control of Multiscale and Distributed Process Systems , 2005, Comput. Chem. Eng..

[25]  Davood Babaei Pourkargar,et al.  Modification to adaptive model reduction for regulation of distributed parameter systems with fast transients , 2013 .

[26]  Chang Liu,et al.  Online Spatiotemporal Extreme Learning Machine for Complex Time-Varying Distributed Parameter Systems , 2017, IEEE Transactions on Industrial Informatics.

[27]  H. M. Park,et al.  Low dimensional modeling of flow reactors , 1996 .

[28]  Antonios Armaou,et al.  Computation of empirical eigenfunctions and order reduction for nonlinear parabolic PDE systems with time-dependent spatial domains , 2001 .

[29]  Stevan Dubljevic,et al.  Order‐reduction of parabolic PDEs with time‐varying domain using empirical eigenfunctions , 2013 .

[30]  Zhou Huai-chun,et al.  Development of a distributed-parameter model for the evaporation system in a supercritical W-shaped boiler , 2014 .

[31]  Han-Xiong Li,et al.  A novel neural internal model control for multi-input multi-output nonlinear discrete-time processes , 2009 .

[32]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .

[33]  Shaoyuan Li,et al.  Time/Space-Separation-Based SVM Modeling for Nonlinear Distributed Parameter Processes , 2011 .

[34]  Frank Kwasniok,et al.  The reduction of complex dynamical systems using principal interaction patterns , 1996 .

[35]  Davood Babaei Pourkargar,et al.  Geometric output tracking of nonlinear distributed parameter systems via adaptive model reduction , 2014 .

[36]  Panagiotis D. Christofides,et al.  Optimal control of diffusion-convection-reaction processes using reduced-order models , 2008, Comput. Chem. Eng..

[37]  Guanrong Chen,et al.  Spectral-approximation-based intelligent modeling for distributed thermal processes , 2005, IEEE Transactions on Control Systems Technology.

[38]  Han-Xiong Li,et al.  Data-based Suboptimal Neuro-control Design with Reinforcement Learning for Dissipative Spatially Distributed Processes , 2014 .

[39]  Shaoyuan Li,et al.  A fuzzy-based spatio-temporal multi-modeling for nonlinear distributed parameter processes , 2014, Appl. Soft Comput..

[40]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .