Improvements on bottleneck matching and related problems using geometry

Let A and B be two sets of n objects in R d. we propose to use bottleneck mat chtng as a convenient way for measuring the resemblance between them, and present several algorithms for computing, as well as approximating, this resemblance. The running time of all these algorithms is close to O(nl 5,. For instance, if the objects are points in the plane, the running time is O(n lslogrr). We also consider the problem of finding a translation of B that maximizes the resemblance to A under the bottleneck matching criterion. When .4 and B are point-sets in the plane, we present an O (n5 log n) time algorithm for determining whether for some translated copy the resemblance gets below a given p, improving the previous result of .41t, Mehlhorn, Wagener and Welzl by a factor of almost n. We use this result to compute the smallest such p in time 0(n5 Ioga n), and give an eflicient approximation scheme for this problem.

[1]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[3]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[4]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[5]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[6]  János Komlós,et al.  Sorting in c log n parallel sets , 1983, Comb..

[7]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[8]  Donald B. Johnson,et al.  Generalized Selection and Ranking: Sorted Matrices , 1984, SIAM J. Comput..

[9]  L. Lovász Matching Theory (North-Holland mathematics studies) , 1986 .

[10]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[11]  Takao Asano,et al.  Efficient Algorithms for Geometric Graph Search Problems , 1986, SIAM J. Comput..

[12]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[13]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[14]  Pravin M. Vaidya,et al.  Geometry helps in matching , 1989, STOC '88.

[15]  Subhash Suri,et al.  Finding tailored partitions , 1989, SCG '89.

[16]  Daniel P. Huttenlocher,et al.  Computing the minimum Hausdorff distance for point sets under translation , 1990, SCG '90.

[17]  Subhash Suri,et al.  Applications of a semi-dynamic convex hull algorithm , 1990, BIT.

[18]  Helmut Alt,et al.  Approximate matching of polygonal shapes , 1995, SCG '91.

[19]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.

[20]  Subhash Suri,et al.  Finding Tailored Partitions , 1991, J. Algorithms.

[21]  Helmut Alt,et al.  Approximate Matching of Polygonal Shapes (Extended Abstract) , 1991, SCG.

[22]  Esther M. Arkin,et al.  Matching points into noise regions: combinatorial bounds and algorithms , 1991, SODA '91.

[23]  Klara Kedem,et al.  Improvements on Geometric Pattern Matching Problems , 1992, SWAT.

[24]  Jirí Matousek,et al.  Ray shooting and parametric search , 1992, STOC '92.

[25]  Stefan Schirra,et al.  Approximate decision algorithms for point set congruence , 1992, SCG '92.

[26]  Michael T. Goodrich,et al.  Geometric Pattern Matching Under Euclidean Motion , 1993, Comput. Geom..

[27]  Micha Sharir,et al.  Computing the Smallest K-enclosing Circle and Related Problems , 1993, Comput. Geom..

[28]  Paul J. Heffernan,et al.  Generalized Approzimate Algorithms for Point Set Congruence , 1993, WADS.

[29]  Samuel R. Buss,et al.  Linear and O(n log n) time minimum-cost matching algorithms for quasi-convex tours , 1994, SODA '94.

[30]  Micha Sharir,et al.  Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications , 1995, SCG '95.

[31]  Matthew J. Katz Improved algorithms in geometric optimization via expanders , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[32]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.