Products of symmetric group characters

Abstract In [33] , the authors introduced a new basis of the ring of symmetric functions which evaluate to the irreducible characters of the symmetric group at roots of unity. The structure coefficients for this new basis are the stable Kronecker coefficients. In this paper we give combinatorial descriptions for several products. In addition, we identify some applications and instances where special cases of these products have occurred elsewhere in the mathematical literature.

[1]  D. E. Littlewood,et al.  Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups , 1958, Canadian Journal of Mathematics.

[2]  J. Luque,et al.  Algebraic invariants of five qubits , 2005, quant-ph/0506058.

[3]  Michel Brion,et al.  Stable properties of plethysm : on two conjectures of Foulkes , 1993 .

[4]  C. Chauve,et al.  COMBINATORIAL OPERATORS FOR KRONECKER POWERS OF REPRESENTATIONS OF Sn , 2006 .

[5]  Jeffrey B. Remmel,et al.  On the Kronecker product of Schur functions of two row shapes , 1994 .

[6]  Nolan R. Wallach Quantum Computing and Entanglement for Mathematicians , 2008 .

[7]  Tom Halverson,et al.  Partition Algebras and the Invariant Theory of the Symmetric Group , 2017, Association for Women in Mathematics Series.

[8]  Mercedes H. Rosas The Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes , 2000 .

[9]  Z. Daugherty,et al.  Quasi-partition algebra , 2012, 1212.2596.

[10]  P. Martin,et al.  The Potts model representation and a Robinson–Schensted correspondence for the partition algebra , 1998, Compositio Mathematica.

[11]  Tom Halverson,et al.  Partition algebras , 2004, Eur. J. Comb..

[12]  R. King,et al.  The symmetric group: Characters, products and plethysms , 1973 .

[13]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[14]  P. Martin,et al.  The Structure of the Partition Algebras , 1996 .

[15]  D. E. Littlewood,et al.  The Kronecker Product of Symmetric Group Representations , 1956 .

[16]  F D Murnaghan ON THE ANALYSIS OF THE KRONECKER PRODUCT OF IRREDUCIBLE REPRESENTATIONS OF S(n). , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Guoce Xin,et al.  Invariants, Kronecker products, and combinatorics of some remarkable Diophantine systems , 2009, Adv. Appl. Math..

[18]  Jean-Yves Thibon,et al.  Hopf Algebras of Symmetric Functions and Tensor Products of Symmetric Group Representations , 1991, Int. J. Algebra Comput..

[19]  Mike Zabrocki,et al.  Symmetric group characters as symmetric functions , 2015, 1605.06672.

[20]  Jeffrey B. Remmel,et al.  A formula for the Kronecker products of Schur functions of hook shapes , 1989 .

[21]  Tom Halverson,et al.  RSK Insertion for Set Partitions and Diagram Algebras , 2005, Electron. J. Comb..

[22]  B. G. Wybourne,et al.  Generating functions for stable branching coefficients of , and , 1997 .

[23]  Mike Zabrocki,et al.  Hilbert series of invariants, constant terms and Kostka-Foulkes polynomials , 2009, Discret. Math..

[24]  Ernesto Vallejo,et al.  Stability of Kronecker Products of Irreducible Characters of the Symmetric Group , 1999, Electron. J. Comb..

[25]  R. King Branching rules for GL(N)⊃Σm and the evaluation of inner plethysms , 1974 .

[26]  Paul Martin,et al.  TEMPERLEY-LIEB ALGEBRAS FOR NON-PLANAR STATISTICAL MECHANICS — THE PARTITION ALGEBRA CONSTRUCTION , 1994 .

[27]  Laurent Manivel,et al.  On the asymptotics of Kronecker coefficients , 2014, Journal of Algebraic Combinatorics.

[28]  Mike Zabrocki,et al.  Kronecker coefficients via Symmetric Functions and Constant Term Identities , 2012, Int. J. Algebra Comput..

[29]  Jonah Blasiak,et al.  Kronecker coefficients for one hook shape , 2012, 1209.2018.

[30]  Nolan R. Wallach The Hilbert Series of Measures of Entanglement for 4 Qubits , 2005 .

[31]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[32]  Ricky Ini Liu,et al.  Kronecker coefficients and noncommutative super Schur functions , 2015, J. Comb. Theory, Ser. A.

[33]  Emmanuel Briand,et al.  The stability of the Kronecker product of Schur functions , 2010 .

[34]  J. Luque,et al.  Polynomial invariants of four qubits , 2002, quant-ph/0212069.

[35]  J. Thibon,et al.  A Hopf-Algebra Approach to Inner Plethysm , 1994 .

[36]  Ricky Ini Liu A simplified Kronecker rule for one hook shape , 2014 .

[37]  Rosa Orellana,et al.  A COMBINATORIAL INTERPRETATION FOR THE COEFFICIENTS IN THE KRONECKER PRODUCT s(n p;p) s , 2005 .

[38]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[39]  Jean-Yves Thibon,et al.  Reduced notation, inner plethysms and the symmetric group , 1993 .

[40]  F. Murnaghan The Analysis of the Kronecker Product of Irreducible Representations of the Symmetric Group , 1938 .

[41]  Rosa Orellana,et al.  The partition algebra and the Kronecker coefficients , 2012, 1210.5579.

[42]  Tom Halverson,et al.  Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups , 2016, 1605.06543.

[43]  R. Orellana,et al.  The Hopf structure of symmetric group characters as symmetric functions , 2018, Algebraic Combinatorics.

[44]  Greta Panova,et al.  Kronecker products, characters, partitions, and the tensor square conjectures , 2013, 1304.0738.