Very Sparse LSSVM Reductions for Large-Scale Data
暂无分享,去创建一个
[1] Yuh-Jye Lee,et al. SSVM: A Smooth Support Vector Machine for Classification , 2001, Comput. Optim. Appl..
[2] D. W. Scott,et al. Biased and Unbiased Cross-Validation in Density Estimation , 1987 .
[3] Stephan R. Sain,et al. Multi-dimensional Density Estimation , 2004 .
[4] S. Sathiya Keerthi,et al. Building Support Vector Machines with Reduced Classifier Complexity , 2006, J. Mach. Learn. Res..
[5] E. Nyström. Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .
[6] Christopher J. Merz,et al. UCI Repository of Machine Learning Databases , 1996 .
[7] Johan A. K. Suykens,et al. Optimized fixed-size kernel models for large data sets , 2010, Comput. Stat. Data Anal..
[8] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[9] Christopher J. C. Burges,et al. Simplified Support Vector Decision Rules , 1996, ICML.
[10] Stephen P. Boyd,et al. Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.
[11] Charles C. Taylor,et al. Bootstrap choice of the smoothing parameter in kernel density estimation , 1989 .
[12] Johan A. K. Suykens,et al. Sparse LS-SVMs with L0 - norm minimization , 2011, ESANN.
[13] Yoshinobu Hotta,et al. Sparse learning for support vector classification , 2010, Pattern Recognit. Lett..
[14] Gavin C. Cawley,et al. Improved sparse least-squares support vector machines , 2002, Neurocomputing.
[15] Yi Yang,et al. Support vector machine based methods for non-intrusive identification of miscellaneous electric loads , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.
[16] R. Fletcher. Practical Methods of Optimization , 1988 .
[17] Johan A. K. Suykens,et al. Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.
[18] R. Taylor,et al. The Numerical Treatment of Integral Equations , 1978 .
[19] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[20] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[21] Gunnar Rätsch,et al. Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.
[22] Bernhard Schölkopf,et al. Use of the Zero-Norm with Linear Models and Kernel Methods , 2003, J. Mach. Learn. Res..
[23] Johan A. K. Suykens,et al. Sparse approximation using least squares support vector machines , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).
[24] Vladimir Vapnik,et al. The Nature of Statistical Learning , 1995 .
[25] Johan A. K. Suykens,et al. Sparse conjugate directions pursuit with application to fixed-size kernel models , 2011, Machine Learning.
[26] Johan A. K. Suykens,et al. Coupled Simulated Annealing , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[27] Tom Downs,et al. Exact Simplification of Support Vector Solutions , 2002, J. Mach. Learn. Res..
[28] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[29] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[30] Weidong Zhang,et al. Improved sparse least-squares support vector machine classifiers , 2006, Neurocomputing.
[31] Johan A. K. Suykens,et al. Reducing the Number of Support Vectors of SVM Classifiers Using the Smoothed Separable Case Approximation , 2012, IEEE Transactions on Neural Networks and Learning Systems.
[32] Johan A. K. Suykens,et al. Sparse Reductions for Fixed-Size Least Squares Support Vector Machines on Large Scale Data , 2013, PAKDD.
[33] Johan A. K. Suykens,et al. Least Squares Support Vector Machines , 2002 .
[34] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[35] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[36] Yuh-Jye Lee,et al. RSVM: Reduced Support Vector Machines , 2001, SDM.