The Sylvester-Ramanujan System of Equations and The Complex Power Moment Problem

A classical system of algebraic equations is treated as a finite power moment problem in C and investigated on this base. Being originated from the algebraic theory of binary forms, this system is closely related to an extraordinary number of different subjects in the classical and modern analysis. A survey of these relations is presented.

[1]  Bruce Reznick Some constructions of spherical 5-designs☆ , 1995 .

[2]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[3]  D. Hilbert,et al.  Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n ter Potenzen (Waringsches Problem) , 1932 .

[4]  W. J. Ellison Waring's Problem , 1971 .

[5]  J. J. Seidel,et al.  Isometric embeddings and geometric designs , 1994, Discret. Math..

[6]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[7]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[8]  G. Rota,et al.  The invariant theory of binary forms , 1984 .

[9]  Bruce Reznick,et al.  Homogeneous Polynomial Solutions to Constant Coefficient PDE's , 1996 .

[10]  E. Schmidt Zum Hilbertschen Beweise des Waringschen Theorems , 1913 .

[11]  J. Sylvester,et al.  LX. On a remarkable discovery in the theory of canonical forms and of hyperdeterminants , 1851 .

[12]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[13]  Ramanujan--for lowbrows , 1993 .

[14]  Allan Pinkus,et al.  On a recovery problem , 1995 .

[15]  Yu. I. Lyubich On the boundary spectrum of contractions in Minkowski spaces , 1970 .

[16]  Yu. I. Lyubich,et al.  Isometric embed-dings between classical Banach spaces, cubature formulas, and spherical designs , 1993 .

[17]  Andrzej Schinzel On a decomposition of polynomials in several variables, II , 2002 .

[18]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[19]  F. Hausdorff Zur Hilbertschen Lösung des Waringschen Problems , 1909 .

[20]  B. Reznick Sums of Even Powers of Real Linear Forms , 1992 .

[21]  D. Hilbert,et al.  Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem). Dem Andenken an Hermann Minkowski gewidmet. , 1909 .

[22]  J. Kung Canonical forms for binary forms of even degree , 1987 .

[23]  V. Milman,et al.  A few observations on the connections between local theory and some other fields , 1988 .

[24]  E. Stridsberg Sur la démonstration de M. Hilbert du théorème de waring , 1912 .

[25]  F. R. Gantmakher The Theory of Matrices , 1984 .

[26]  Andrzej Schinzel On a decomposition of polynomials in several variables , 2002 .