Simultaneous Cyclic Scheduling and Control of a Multiproduct CSTR Reactor

In this work, we propose a simultaneous scheduling and control formulation by explicitly incorporating into the scheduling model process dynamics in the form of differential/algebraic constraints. The formulation takes into account the interactions between scheduling and control and is able to handle nonlinearities embedded into the processing system. The simultaneous scheduling and control problems is cast as a mixed-integer dynamic optimization (MIDO) problem where the simultaneous approach, based on orthogonal collocation on finite elements, is used to transform it into a mixed-integer nonlinear programming (MINLP) problem. The proposed simultaneous scheduling and control formulation is tested using three multiproduct continuous stirred tank reactors featuring difficult nonlinearities.

[1]  Jose M. Pinto,et al.  Mixed integer nonlinear programming techniques for the short term scheduling of oil refineries , 2003 .

[2]  I. Grossmann,et al.  A Decomposition Method for the Simultaneous Planning and Scheduling of Single-Stage Continuous Multiproduct Plants , 2006 .

[3]  Gijsbert Korevaar,et al.  European Symposium on Computer Aided Process Engineering-12, 35 European Symposium of the Working Party on Computer Aided Process Engineering , 2002 .

[4]  Lorenz T. Biegler,et al.  Dynamic optimization of HIPS open-loop unstable polymerization reactors , 2005 .

[5]  Paul I. Barton,et al.  Mixed-integer dynamic optimization I: problem formulation , 1999 .

[6]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[7]  David D. Brengel,et al.  Nonlinear analysis in process design. Why overdesign to avoid complex nonlinearities , 1990 .

[8]  Rüdiger Franke,et al.  Production campaign planning including grade transition sequencing and dynamic optimization , 2005, Comput. Chem. Eng..

[9]  I. Grossmann,et al.  A combined penalty function and outer-approximation method for MINLP optimization : applications to distillation column design , 1989 .

[10]  David D. Brengel,et al.  NONLINEAR ANALYSIS IN PROCESS DESIGN , 1991 .

[11]  Efstratios N. Pistikopoulos,et al.  Towards an efficient numerical procedure for mixed integer optimal control , 1997 .

[12]  Antonio Flores-Tlacuahuac,et al.  Simultaneous mixed-integer dynamic optimization for integrated design and control , 2007, Comput. Chem. Eng..

[13]  G. A. Hicks,et al.  Approximation methods for optimal control synthesis , 1971 .

[14]  Ignacio E. Grossmann,et al.  Incorporating scheduling in the optimal design of multiproduct batch plants , 1989 .

[15]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[16]  Francis J. Doyle,et al.  Hybrid approach to polymer grade transition control , 2004 .

[17]  L. Biegler Optimization Strategies for Complex Process Models , 1992 .

[18]  Antonio Flores-Tlacuahuac,et al.  Optimal Transition and Robust Control Design for Exothermic Continuous Reactors , 2005 .

[19]  B. Bequette,et al.  Model predictive control of processes with input multiplicities , 1995 .

[20]  P. I. Barton,et al.  Global Mixed-Integer Dynamic Optimization , 2005 .

[21]  J. M. Pinto,et al.  Optimal cyclic scheduling of multistage continuous multiproduct plants , 1994 .

[22]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[23]  Francis J. Doyle,et al.  Control‐relevant scheduling of polymer grade transitions , 2002 .

[24]  Jaime Cerdá,et al.  State-of-the-art review of optimization methods for short-term scheduling of batch processes , 2006, Comput. Chem. Eng..

[25]  Ignacio E. Grossmann,et al.  Enterprise‐wide optimization: A new frontier in process systems engineering , 2005 .

[26]  Efstratios N. Pistikopoulos,et al.  Optimal grade transition campaign scheduling in a gas-phase polyolefin FBR using mixed integer dynamic optimization , 2003 .

[27]  I. Grossmann,et al.  MINLP model for cyclic multiproduct scheduling on continuous parallel lines , 1991 .

[28]  B. Finlayson Nonlinear analysis in chemical engineering , 1980 .

[29]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[30]  L. Biegler,et al.  A robust and efficient mixed-integer non-linear dynamic optimization approach for simultaneous design and control , 2005 .

[31]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[32]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..

[33]  L. B. Koppel Input multiplicities in nonlinear, multivariable control systems , 1982 .

[34]  Achim Kienle,et al.  Short-Term Scheduling of Batch Processes : a Comparative Study of Different Approaches , 2005 .

[35]  L. Biegler,et al.  Dynamic Optimization in the Design and Scheduling of Multiproduct Batch Plants , 1996 .

[36]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .