Interval Linear Programming with generalized interval arithmetic

Generally, vagueness is modelled by a fuzzy approach and randomness by a stochastic approach. But in some cases, a decision maker may prefer using interval numbers as coefficients of an inexact relationship. In this paper, we define a linear programming problem involving interval numbers as an extension of the classical linear programming problem to an inexact environment. By using a new simple ranking for interval numbers and new generalized interval arithmetic, we attempt to de- velop a theory for solving interval number linear programming problems without converting them to classical linear progra m- ming problems.

[1]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[2]  E. Kaucher Interval Analysis in the Extended Interval Space IR , 1980 .

[3]  Weldon A. Lodwick,et al.  Interval Methods and Fuzzy Optimization , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  Herry Suprajitno Linear Programming with Interval Arithmetic , 2010 .

[5]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[6]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[7]  Harry Munack,et al.  On global optimization using interval arithmetic , 1992, Computing.

[8]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[9]  G. Bitran Linear Multiple Objective Problems with Interval Coefficients , 1980 .

[10]  Carlos Henggeler Antunes,et al.  Multiple objective linear programming models with interval coefficients - an illustrated overview , 2007, Eur. J. Oper. Res..

[11]  Tong Shaocheng,et al.  Interval number and fuzzy number linear programmings , 1994 .

[12]  K. Ganesan,et al.  On Arithmetic Operations of Interval Numbers , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[13]  R. Yager On the lack of inverses in fuzzy arithmetic , 1980 .

[14]  K. Ganesan,et al.  On Some Properties of Interval Matrices , 2007 .

[15]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[16]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[17]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[18]  Debjani Chakraborty,et al.  Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming , 2001, Fuzzy Sets Syst..

[19]  Frantisek Mráz Calculating the exact bounds of optimal valuesin LP with interval coefficients , 1998, Ann. Oper. Res..

[20]  Ralph E. Steuer Algorithms for Linear Programming Problems with Interval Objective Function Coefficients , 1981, Math. Oper. Res..

[21]  D. Datta,et al.  Inverse Interval Matrix: A New Approach , 2011 .