Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance
暂无分享,去创建一个
Jesús F. Palacián | Patricia Yanguas | Dante Carrasco | Claudio Vidal | Jhon Vidarte | J. Palacián | C. Vidal | P. Yanguas | J. Vidarte | D. Carrasco
[1] R. Cushman,et al. A Universal Reduction Procedure for Hamiltonian Group Actions , 1991 .
[2] Kenneth R. Meyer,et al. Symmetries and Integrals in Mechanics , 1973 .
[3] D. Farrelly,et al. Normalization and the detection of integrability: The generalized Van Der Waals potential , 1995 .
[4] H. Broer,et al. The quasi-periodic Hamiltonian Hopf bifurcation , 2007 .
[5] Jan Cornelis van der Meer,et al. The Hamiltonian Hopf Bifurcation , 1985 .
[6] O. Cornea. Lusternik-Schnirelmann Category , 2003 .
[7] A. Deprit. The Lissajous transformation I. Basics , 1991 .
[8] Konstantinos Efstathiou,et al. Analysis of Rotation-Vibration Relative Equilibria on the Example of a Tetrahedral Four Atom Molecule , 2004, SIAM J. Appl. Dyn. Syst..
[9] J. Marsden,et al. Reduction of symplectic manifolds with symmetry , 1974 .
[10] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[11] T. Zeeuw. Dynamical Models for Axisymmetric and Triaxial Galaxies , 1987 .
[12] Jesús F. Palacián,et al. Periodic Solutions and KAM Tori in a Triaxial Potential , 2017, SIAM J. Appl. Dyn. Syst..
[13] Els van der Aa. First-order resonances in three-degrees-of-freedom systems , 1983 .
[14] Kenneth R. Meyer,et al. Periodic Solutions in Hamiltonian Systems, Averaging, and the Lunar Problem , 2008, SIAM J. Appl. Dyn. Syst..
[15] M. Kummer,et al. On averaging, reduction, and symmetry in hamiltonian systems , 1983 .
[16] Richard Cushman,et al. Global Aspects of Classical Integrable Systems , 2004 .
[17] George Haller,et al. Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems , 1996 .
[18] Bernd Sturmfels,et al. Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .
[19] Kenneth R. Meyer,et al. Periodic orbits near ℒ4 for mass ratios near the critical mass ratio of routh , 1971 .
[20] R. Cushman,et al. Singular reduction of axially symmetric perturbations of the isotropic harmonic oscillator , 1999 .
[21] V. Lanchares,et al. Perturbed ion traps: A generalization of the three-dimensional Henon-Heiles problem. , 2002, Chaos.
[22] Y. Yi,et al. Invariant Tori in Hamiltonian Systems with High Order Proper Degeneracy , 2010 .
[23] A. Elipe,et al. Analytical investigation of the orbital structure close to the 1:1:1 resonance in spheroidal galaxies , 2005 .
[24] André Deprit,et al. Canonical transformations depending on a small parameter , 1969 .
[25] C. Valls,et al. PERIODIC SOLUTIONS OF A GALACTIC POTENTIAL , 2014 .
[26] Konstantinos Efstathiou,et al. Metamorphoses of Hamiltonian Systems with Symmetries , 2005 .
[27] K. Efstathiou,et al. Perturbations of the 1:1:1 resonance with tetrahedral symmetry: a three degree of freedom analogue of the two degree of freedom Henon-Heiles Hamiltonian , 2004 .
[28] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[29] N. Caranicolas. 1:1:1 resonant periodic orbits in 3-dimensional galactic-type Hamiltonians , 1994 .
[30] M. Stiavelli,et al. Structure and dynamics of elliptical galaxies , 1993 .
[31] D. Merritt,et al. Stellar orbits in a triaxial galaxy. I - Orbits in the plane of rotation , 1983 .
[32] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[33] S. Ferrer,et al. Hamiltonian fourfold 1:1 resonance with two rotational symmetries , 2007 .
[34] M. Kummer. On resonant classical Hamiltonians with frequencies , 1990 .
[35] Kenneth R. Meyer,et al. Geometric Averaging of Hamiltonian Systems: Periodic Solutions, Stability, and KAM Tori , 2011, SIAM Journal on Applied Dynamical Systems.
[36] Qualitative features of Hamiltonian systems through averaging and reduction , 2007 .
[37] H. Hanßmann. Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples , 2006 .
[38] Jesús F. Palacián,et al. Hamiltonian Oscillators in 1—1—1 Resonance: Normalization and Integrability , 2000, J. Nonlinear Sci..
[39] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[40] H. Hanßmann,et al. Algebraic Methods for Determining Hamiltonian Hopf Bifurcations in Three-Degree-of-Freedom Systems , 2005 .
[41] E. Zotos,et al. Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits , 2012, 1206.5394.
[42] G. Haller,et al. Chaos near resonance , 1999 .
[43] Luis Alberto Ibort Latre. The geometry of dynamics , 1996 .
[44] J. Llibre,et al. Periodic orbits for the generalized Yang–Mills Hamiltonian system in dimension 6 , 2014 .
[45] Alberto Ibort,et al. Geometry from Dynamics, Classical and Quantum , 2014 .
[46] K. Meyer,et al. Canonical forms for symplectic and Hamiltonian matrices , 1974 .
[47] Yanheng Ding,et al. Periodic Solutions of Hamiltonian Systems , 2000, SIAM J. Math. Anal..
[48] Normal forms of 3 degree of freedom Hamiltonian systems at equilibrium in the resonant case , 2007 .
[49] Bruce R. Miller,et al. Normalization in the Face of Integrability , 1988 .
[50] Bernd Sturmfels,et al. Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.
[51] H. Schomerus. Periodic orbits near bifurcations of codimension two: Classical mechanics, semiclassics and Stokes transitions. , 1997, chao-dyn/9711013.
[52] Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry , 2016 .
[53] Heinz Hanßmann,et al. On the Hamiltonian Hopf Bifurcations in the 3D Hénon–Heiles Family , 2001 .
[54] George Huitema,et al. Quasi-periodic motions in families of dynamical systems , 1996 .
[55] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .
[56] The Hénon and Heiles Problem in Three Dimensions. , 1998 .
[57] A. Weinstein. Bifurcations and Hamilton's principle , 1978 .
[58] K. Meyer,et al. Invariant tori in the lunar problem , 2014 .
[59] Alan Weinstein,et al. Normal modes for nonlinear hamiltonian systems , 1973 .
[60] A. Weinstein. Symplectic v‐manifolds, periodic orbits of hamiltonian systems, and the volume of certain riemannian manifolds , 1977 .
[61] New 1:1:1 periodic solutions in $$3$$3-dimensional galactic-type Hamiltonian systems , 2014 .
[62] Jesús F. Palacián,et al. On perturbed oscillators in 1-1-1 resonance: the case of axially symmetric cubic potentials , 2002 .
[64] J. Moser,et al. Regularization of kepler's problem and the averaging method on a manifold , 1970 .
[65] A. Lichtenberg,et al. Regular and Chaotic Dynamics , 1992 .
[66] K. Meyer,et al. Singular reduction of resonant Hamiltonians , 2018 .
[67] J. Llibre,et al. New families of periodic orbits for a galactic potential , 2016 .
[68] R. Cushman,et al. Linear Hamiltonian Hopf bifurcation for point–group–invariant perturbations of the 1:1:1 resonance , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[69] Darryl D. Holm,et al. Hamiltonian chaos in nonlinear optical polarization dynamics , 1990 .
[70] J. C. van der Meer,et al. Bifurcations of the Hamiltonian Fourfold 1:1 Resonance with Toroidal Symmetry , 2011, J. Nonlinear Sci..