Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau

Ce travail, a l'interface entre les mathematiques appliquees et la physique, s'articule autour de la modelisation numerique des vesicules biologiques, un modele pour les globules rouges du sang. Pour cela, le modele de Canham et Helfrich est adopte pour decrire le comportement des vesicules. La modelisation numerique utilise la methode des fonctions de niveau dans un cadre elements finis. Un nouvel algorithme de resolution numerique combinant une technique de multiplicateurs de Lagrange avec une adaptation automatique de maillages garantit la conservation exacte des volumes et des surfaces. Cet algorithme permet donc de depasser une limitation cruciale actuelle de la methode des fonctions de niveau, a savoir les pertes de masse couramment observees dans ce type de problemes. De plus, les proprietes de convergence de la methode des fonctions de niveau se trouvent ainsi grandement ameliorees, comme l'indiquent de nombreux tests numeriques. Ces tests comprennent notamment des problemes d'advection elementaires, des mouvements par courbure moyenne ainsi que des mouvements par diffusion de surface. Concernant l'equilibre statique des vesicules, une condition generale d'equilibre d'Euler-Lagrange est obtenue a l'aide d'outils de derivation de forme. En dynamique, le mouvement d'une vesicule sous l'action d'un ecoulement de cisaillement est etudie dans le cadre des nombres de Reynolds eleves. L'effet du confinement est considere, et les regimes classiques de chenille de char et de basculement sont retrouves. Finalement, pour la premiere fois, l'effet des termes inertiels est etudie et on montre qu'au dela d'une valeur critique du nombre de Reynolds, la vesicule passe d'un mouvement de basculement a un mouvement de chenille de char.

[1]  Helfrich shape equation for axisymmetric vesicles as a first integral. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[3]  R. Skalak,et al.  Motion of a tank-treading ellipsoidal particle in a shear flow , 1982, Journal of Fluid Mechanics.

[4]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[5]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[6]  W. Helfrich,et al.  Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. , 1989, Physical review. A, General physics.

[7]  M. Abkarian,et al.  Dynamics of viscous vesicles in shear flow , 2006, The European physical journal. E, Soft matter.

[8]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[9]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[10]  Steven J. Ruuth,et al.  A Simple Scheme for Volume-Preserving Motion by Mean Curvature , 2003, J. Sci. Comput..

[11]  Stéphane Zaleski,et al.  Droplet impact on a dry surface: triggering the splash with a small obstacle , 2005, Journal of Fluid Mechanics.

[12]  Jack Xin,et al.  Diffusion-Generated Motion by Mean Curvature for Filaments , 2001, J. Nonlinear Sci..

[13]  New approach on the general shape equation of axisymmetric vesicles , 1999, cond-mat/9901075.

[14]  Pierre Saramito,et al.  Improving the mass conservation of the level set method in a finite element context , 2010 .

[15]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[16]  Uwe F. Mayer,et al.  A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow , 2002 .

[17]  Matthew A. Grayson,et al.  A short note on the evolution of a surface by its mean curvature , 1989 .

[18]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Gunilla Kreiss,et al.  A conservative level set method for two phase flow II , 2005, J. Comput. Phys..

[20]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[21]  Gieri Simonett,et al.  The Willmore flow near spheres , 2001, Differential and Integral Equations.

[22]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[23]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[24]  E. Kuwert,et al.  The Willmore Flow with Small Initial Energy , 2001 .

[25]  Jian-Guo,et al.  Shape equations of the axisymmetric vesicles. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[27]  Bertrand Maury,et al.  Fluid-particle flow: a symmetric formulation , 1997 .

[28]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[29]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[30]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[31]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[32]  Alexander J. Wagner,et al.  A Practical Introduction to the Lattice Boltzmann Method , 2008 .

[33]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[34]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[35]  U. Mayer Numerical solutions for the surface diusion ow in three space dimensions , 2001 .

[36]  Stéphane Popinet,et al.  Bubble collapse near a solid boundary: a numerical study of the influence of viscosity , 2002, Journal of Fluid Mechanics.

[37]  Aymen Laadhari,et al.  On the equilibrium equation for a generalized biological membrane energy by using a shape optimization approach , 2010 .

[38]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[39]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[40]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[41]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[42]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[43]  Gwennou Coupier,et al.  Tumbling of viscous vesicles in a linear shear field near a wall , 2009 .

[44]  Stéphane Zaleski,et al.  Formation de digitations lors de l'impact d'une goutte sur un film liquide , 1998 .

[45]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[46]  J. C. Luke,et al.  Theoretical shapes of bilipid vesicles under conditions of increasing membrane area. , 1979, Biophysical journal.

[47]  C. Pozrikidis,et al.  Boundary Integral and Singularity Methods for Linearized Viscous Flow: Preface , 1992 .