Augmented proper orthogonal decomposition for problems with moving discontinuities
暂无分享,去创建一个
Thomas A. Brenner | Raymond L. Fontenot | Paul G. A. Cizmas | Ronald W. Breault | R. Breault | T. O'Brien | P. Cizmas | Thomas J. O'Brien
[1] L. Kantorovich,et al. Approximate methods of higher analysis , 1960 .
[2] D. Gidaspow. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .
[3] M. Syamlal,et al. MFIX documentation theory guide , 1993 .
[4] Paul G. A. Cizmas,et al. Proper Orthogonal Decomposition of Turbine Rotor-Stator Interaction , 2003 .
[5] David J. Lucia,et al. Reduced order modeling of a two-dimensional flow with moving shocks , 2003 .
[6] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[7] Etienne Decencière,et al. Image filtering using morphological amoebas , 2007, Image Vis. Comput..
[8] Virginia Kalb,et al. An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models , 2007 .
[9] Robert M. Haralick,et al. Morphologic edge detection , 1987, IEEE J. Robotics Autom..
[10] E. Koschmieder. Taylor vortices between eccentric cylinders , 1976 .
[11] Pierre Soille,et al. Morphological Image Analysis: Principles and Applications , 2003 .
[12] Paul G. A. Cizmas,et al. Proper-Orthogonal Decomposition of Spatio-Temporal Patterns in Fluidized Beds , 2003 .
[13] Thomas A. Brenner,et al. Acceleration techniques for reduced-order models based on proper orthogonal decomposition , 2008, J. Comput. Phys..
[14] Guillermo Rein,et al. 44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .
[15] Linda R. Petzold,et al. Error Estimation for Reduced-Order Models of Dynamical Systems , 2005, SIAM J. Numer. Anal..
[16] Madhava Syamlal,et al. MFIX documentation numerical technique , 1998 .
[17] Yehuda Salu,et al. Turbulent diffusion from a quasi-kinematical point of view , 1977 .
[18] F. Meyer,et al. Mathematical morphology: from two dimensions to three dimensions , 1992 .
[19] W. Tao,et al. A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems , 2008 .
[20] E. Fehlberg,et al. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .
[21] T. Yuan,et al. A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition , 2005, Comput. Chem. Eng..
[22] Charbel Farhat,et al. Recent Advances in Reduced-Order Modeling and Application to Nonlinear Computational Aeroelasticity , 2008 .
[23] Thomas A. Brenner,et al. Practical Aspects of the Implementation of Proper Orthogonal Decomposition , 2009 .
[24] X. Gloerfelt. Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity , 2008 .
[25] Jean-Antoine Désidéri,et al. Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .