Augmented proper orthogonal decomposition for problems with moving discontinuities

A method is proposed to augment the proper orthogonal decomposition basis functions with discontinuity modes to better capture moving discontinuities in reduced-order models. Moving discontinuities can be shocks in unsteady gas flows or bubbles in multiphase flow. The method is shown to work for a simple test problem using the first-order wave equation. A method for detecting discontinuities numerically is developed using mathematical morphology. This method is shown to properly identify the edges of bubbles in multiphase flow.

[1]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[2]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[3]  M. Syamlal,et al.  MFIX documentation theory guide , 1993 .

[4]  Paul G. A. Cizmas,et al.  Proper Orthogonal Decomposition of Turbine Rotor-Stator Interaction , 2003 .

[5]  David J. Lucia,et al.  Reduced order modeling of a two-dimensional flow with moving shocks , 2003 .

[6]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[7]  Etienne Decencière,et al.  Image filtering using morphological amoebas , 2007, Image Vis. Comput..

[8]  Virginia Kalb,et al.  An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models , 2007 .

[9]  Robert M. Haralick,et al.  Morphologic edge detection , 1987, IEEE J. Robotics Autom..

[10]  E. Koschmieder Taylor vortices between eccentric cylinders , 1976 .

[11]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[12]  Paul G. A. Cizmas,et al.  Proper-Orthogonal Decomposition of Spatio-Temporal Patterns in Fluidized Beds , 2003 .

[13]  Thomas A. Brenner,et al.  Acceleration techniques for reduced-order models based on proper orthogonal decomposition , 2008, J. Comput. Phys..

[14]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[15]  Linda R. Petzold,et al.  Error Estimation for Reduced-Order Models of Dynamical Systems , 2005, SIAM J. Numer. Anal..

[16]  Madhava Syamlal,et al.  MFIX documentation numerical technique , 1998 .

[17]  Yehuda Salu,et al.  Turbulent diffusion from a quasi-kinematical point of view , 1977 .

[18]  F. Meyer,et al.  Mathematical morphology: from two dimensions to three dimensions , 1992 .

[19]  W. Tao,et al.  A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems , 2008 .

[20]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[21]  T. Yuan,et al.  A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition , 2005, Comput. Chem. Eng..

[22]  Charbel Farhat,et al.  Recent Advances in Reduced-Order Modeling and Application to Nonlinear Computational Aeroelasticity , 2008 .

[23]  Thomas A. Brenner,et al.  Practical Aspects of the Implementation of Proper Orthogonal Decomposition , 2009 .

[24]  X. Gloerfelt Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity , 2008 .

[25]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .