Natural selection on Plasmodium surface proteins.

[1]  F J Ayala,et al.  Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Hughes,et al.  Allelic variation in the circumsporozoite protein of Plasmodium falciparum from Thai field isolates. , 1994, The American journal of tropical medicine and hygiene.

[3]  L. BenMohamed,et al.  Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. , 1994, Journal of immunology.

[4]  R. Coppel,et al.  The S-antigen of Plasmodium falciparum: repertoire and origin of diversity. , 1993, Molecular and biochemical parasitology.

[5]  M. Aidoo,et al.  Molecular analysis of the association of HLA-B53 and resistance to severe malaria , 1992, Nature.

[6]  S. Hoffman,et al.  Characterization of Plasmodium falciparum sporozoite surface protein 2. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Nei,et al.  A Simple Method for Estimating and Testing Minimum-Evolution Trees , 1992 .

[8]  S. Herrera,et al.  Human recognition of T cell epitopes on the Plasmodium vivax circumsporozoite protein. , 1992, Journal of immunology.

[9]  A. Hughes Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. , 1992, Molecular biology and evolution.

[10]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[11]  A. Saul,et al.  Immunological fine structure of the variable and constant regions of a polymorphic malarial surface antigen from Plasmodium falciparum. , 1991, Molecular and biochemical parasitology.

[12]  R. Houghten,et al.  Location of human cytotoxic T cell epitopes within a polymorphic domain of the Plasmodium falciparum circumsporozoite protein. , 1991, International immunology.

[13]  D. Higgins,et al.  Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Coppel,et al.  A Plasmodium falciparum MSA-2 gene apparently generated by intragenic recombination between the two allelic families. , 1991, Molecular and biochemical parasitology.

[15]  A. Hughes,et al.  Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. , 1991, Genetics.

[16]  A. Thomas,et al.  Sequence comparison of allelic forms of the Plasmodium falciparum merozoite surface antigen MSA2. , 1990, Molecular and biochemical parasitology.

[17]  M. Nei,et al.  Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. , 1990, Molecular biology and evolution.

[18]  A. Waters,et al.  Analysis of variation in PF83, an erythrocytic merozoite vaccine candidate antigen of Plasmodium falciparum. , 1990, Molecular and biochemical parasitology.

[19]  M. A. Saper,et al.  Specificity pockets for the side chains of peptide antigens in HLA-Aw68 , 1990, Nature.

[20]  S. Hoffman,et al.  Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes , 1990, The Journal of experimental medicine.

[21]  R. Coppel,et al.  Structural diversity in the 45-kilodalton merozoite surface antigen of Plasmodium falciparum. , 1990, Molecular and biochemical parasitology.

[22]  D. Battistutta,et al.  Analysis of human t cell response to two plasmodium falciparum merozoite surface antigens , 1989, European journal of immunology.

[23]  V. Nussenzweig,et al.  Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria , 1989, Nature.

[24]  N. Saitou,et al.  Relative Efficiencies of the Fitch-Margoliash, Maximum-Parsimony, Maximum-Likelihood, Minimum-Evolution, and Neighbor-joining Methods of Phylogenetic Tree Construction in Obtaining the Correct Tree , 1989 .

[25]  R. Anders,et al.  Integral membrane protein located in the apical complex of Plasmodium falciparum , 1989, Molecular and cellular biology.

[26]  M. Nei,et al.  Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection , 1988, Nature.

[27]  C. Newbold,et al.  A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite , 1988, Nature.

[28]  J. Weber,et al.  Molecular biology of malaria parasites. , 1988, Experimental parasitology.

[29]  R. Coppel,et al.  Antigens with repeated amino acid sequences from the asexual blood stages of Plasmodium falciparum. , 1988, Progress in allergy.

[30]  R. Coppel,et al.  Identification of two integral membrane proteins of Plasmodium falciparum. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Berzofsky,et al.  Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: immunodominant T-cell domains map to the polymorphic regions of the molecule. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Cross,et al.  Structure and expression of the knob-associated histidine-rich protein of Plasmodium falciparum. , 1987, Molecular and biochemical parasitology.

[33]  H. Shio,et al.  Primary structure and subcellular localization of the knob-associated histidine-rich protein of Plasmodium falciparum. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[34]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[35]  T. McCutchan,et al.  Evolution of the immunodominant domain of the circumsporozoite protein gene from Plasmodium vivax. Implications for vaccines. , 1987, The Journal of biological chemistry.

[36]  T. Triglia,et al.  The complete sequence of the gene for the knob‐associated histidine‐rich protein from Plasmodium falciparum. , 1987, The EMBO journal.

[37]  M. Nei Molecular Evolutionary Genetics , 1987 .

[38]  R. Coppel,et al.  Structure of the RESA gene of Plasmodium falciparum. , 1986, Nucleic acids research.

[39]  M. Nei,et al.  Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. , 1986, Molecular biology and evolution.

[40]  A. Cowman,et al.  Conserved sequences flank variable tandem repeats in two α-antigen genes of Plasmodium falciparum , 1985, Cell.

[41]  A. Cowman,et al.  The ring-infected erythrocyte surface antigen (RESA) polypeptide of Plasmodium falciparum contains two separate blocks of tandem repeats encoding antigenic epitopes that are naturally immunogenic in man. , 1984, Molecular biology & medicine.

[42]  E. Nardin,et al.  T cell responses to pre-erythrocytic stages of malaria: role in protection and vaccine development against pre-erythrocytic stages. , 1993, Annual review of immunology.

[43]  A. Lal,et al.  Circumsporozoite protein gene of Plasmodium simium, a Plasmodium vivax-like monkey malaria parasite. , 1993, Molecular and biochemical parasitology.

[44]  T. McCutchan,et al.  Two types of sequence polymorphism in the circumsporozoite gene of Plasmodium falciparum. , 1992, Molecular and biochemical parasitology.

[45]  R. Coppel,et al.  Repetitive proteins and genes of malaria. , 1987, Annual review of microbiology.

[46]  A. Cowman,et al.  Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids , 1983, Nature.

[47]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[48]  M. Deane,et al.  A naturally acquired human infection by Plasmodium simium of howler monkeys , 1966 .

[49]  H. Munro,et al.  Mammalian protein metabolism , 1964 .