Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation

Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond.

[1]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[2]  Christoph Lutz,et al.  Holographic photolysis of caged neurotransmitters , 2008, Nature Methods.

[3]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[4]  Rafael Yuste,et al.  Genesis of dendritic spines: insights from ultrastructural and imaging studies , 2004, Nature Reviews Neuroscience.

[5]  M. Häusser,et al.  All-Optical Interrogation of Neural Circuits , 2015, The Journal of Neuroscience.

[6]  Mark J. Schnitzer,et al.  Impermanence of dendritic spines in live adult CA1 hippocampus , 2015, Nature.

[7]  L. Parajuli,et al.  Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. , 2015, Cell reports.

[8]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[9]  Bernardo L. Sabatini,et al.  Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties , 2014, Front. Neuroanat..

[10]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[11]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[12]  E. Papagiakoumou,et al.  Two-photon optogenetics. , 2012, Progress in brain research.

[13]  Eirini Papagiakoumou,et al.  Optical developments for optogenetics , 2013, Biology of the cell.

[14]  Katrin I Willig,et al.  Nanoscopy of filamentous actin in cortical dendrites of a living mouse. , 2014, Biophysical journal.

[15]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[16]  Stephan J Sigrist,et al.  Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics , 2015, Nature Methods.

[17]  M. G. Honig,et al.  Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing , 1989, Trends in Neurosciences.

[18]  P. Kind,et al.  Stimulated Emission Depletion (STED) Microscopy Reveals Nanoscale Defects in the Developmental Trajectory of Dendritic Spine Morphogenesis in a Mouse Model of Fragile X Syndrome , 2014, The Journal of Neuroscience.

[19]  Valentina Emiliani,et al.  The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons , 2014, Front. Cell. Neurosci..

[20]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[21]  T. Bonhoeffer,et al.  Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons , 2004, Neuron.

[22]  Raag D. Airan,et al.  Temporally precise in vivo control of intracellular signalling , 2009, Nature.

[23]  Rafael Yuste,et al.  Two-photon optogenetics of dendritic spines and neural circuits in 3D , 2012, Nature Methods.

[24]  A. Bègue,et al.  Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning , 2011, Proceedings of the National Academy of Sciences.

[25]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[26]  Jonathan Bradley,et al.  Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope , 2014, Neuron.

[27]  Valentina Emiliani,et al.  Reshaping the optical dimension in optogenetics , 2012, Current Opinion in Neurobiology.

[28]  M. G. Honig,et al.  Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures , 1986, The Journal of cell biology.

[29]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[30]  Valentina Emiliani,et al.  STED microscope with Spiral Phase Contrast , 2013, Scientific Reports.

[31]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[32]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[33]  George S. B. Williams,et al.  Stimulated Emission Depletion Live-Cell Super-Resolution Imaging Shows Proliferative Remodeling of T-Tubule Membrane Structures After Myocardial Infarction , 2012, Circulation research.

[34]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[35]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[36]  E. Kandel,et al.  Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[38]  S. Hell,et al.  Dynamic far-field fluorescence nanoscopy , 2007 .

[39]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[40]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[41]  Marcel A. Lauterbach,et al.  Finding, defining and breaking the diffraction barrier in microscopy – a historical perspective , 2012, Optical Nanoscopy.

[42]  von F. Zernike Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode , 1934 .

[43]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[44]  Valentina Emiliani,et al.  Three-dimensional holographic photostimulation of the dendritic arbor , 2011, Journal of neural engineering.

[45]  Valentina Emiliani,et al.  Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. , 2008, Optics express.

[46]  Bernardo L Sabatini,et al.  Anatomical and physiological plasticity of dendritic spines. , 2007, Annual review of neuroscience.

[47]  Marcel A. Lauterbach,et al.  Dynamic imaging of colloidal-crystal nanostructures at 200 frames per second. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[48]  B. Sabatini,et al.  Glutamate induces de novo growth of functional spines in developing cortex , 2011, Nature.

[49]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[50]  David Ogden,et al.  Laser photolysis of caged compounds at 405nm: Photochemical advantages, localisation, phototoxicity and methods for calibration , 2009, Journal of Neuroscience Methods.

[51]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[52]  Susumu Tonegawa,et al.  The Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTP , 2011, Neuron.

[53]  Thomas A Nielsen,et al.  Desensitization Properties of AMPA Receptors at the Cerebellar Mossy Fiber–Granule Cell Synapse , 2007, The Journal of Neuroscience.

[54]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .