Characterization of the complete mitochondrial genome sequences of three Merulinidae corals and novel insights into the phylogenetics

Over the past few decades, modern coral taxonomy, combining morphology and molecular sequence data, has resolved many long-standing questions about scleractinian corals. In this study, we sequenced the complete mitochondrial genomes of three Merulinidae corals (Dipsastraea rotumana, Favites pentagona, and Hydnophora exesa) for the first time using next-generation sequencing. The obtained mitogenome sequences ranged from 16,466 bp (D. rotumana) to 18,006 bp (F. pentagona) in length, and included 13 unique protein-coding genes (PCGs), two transfer RNA genes, and two ribosomal RNA genes . Gene arrangement, nucleotide composition, and nucleotide bias of the three Merulinidae corals were canonically identical to each other and consistent with other scleractinian corals. We performed a Bayesian phylogenetic reconstruction based on 13 protein-coding sequences of 86 Scleractinia species. The results showed that the family Merulinidae was conventionally nested within the robust branch, with H. exesa clustered closely with F. pentagona and D. rotumana clustered closely with Favites abdita. This study provides novel insight into the phylogenetics of species within the family Merulinidae and the evolutionary relationships among different Scleractinia genera.

[1]  Z. Forsman,et al.  Using ezRAD to reconstruct the complete mitochondrial genome of Porites fontanesii (Cnidaria: Scleractinia) , 2018, Mitochondrial DNA. Part B, Resources.

[2]  Z. Forsman,et al.  The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing , 2018, Mitochondrial DNA. Part B, Resources.

[3]  D. Miller,et al.  Complete mitochondrial genome sequences of Atlantic representatives of the invasive Pacific coral species Tubastraea coccinea and T. tagusensis (Scleractinia, Dendrophylliidae): Implications for species identification. , 2016, Gene.

[4]  Patricia P. Chan,et al.  tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes , 2016, Nucleic Acids Res..

[5]  V. Barbe,et al.  The complete mitochondrial genome of Acanthastrea maxima (Cnidaria, Scleractinia, Lobophylliidae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[6]  D. Lane,et al.  Conservation of reef corals in the South China Sea based on species and evolutionary diversity , 2016, Biodiversity and Conservation.

[7]  K. Shen,et al.  Next-generation sequencing yields the complete mitogenome of massive coral, Porites lutea (Cnidaria: Poritidae) , 2016, Mitochondrial DNA. Part B, Resources.

[8]  R. Meier,et al.  Towards a phylogenetic classification of reef corals: the Indo‐Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae) , 2014 .

[9]  N. Knowlton,et al.  Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia) , 2014 .

[10]  Haiwei Luo,et al.  Mitochondrial Genome Rearrangements in the Scleractinia/Corallimorpharia Complex: Implications for Coral Phylogeny , 2014, Genome biology and evolution.

[11]  G. Huttley,et al.  The “Naked Coral” Hypothesis Revisited – Evidence for and Against Scleractinian Monophyly , 2014, PloS one.

[12]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[13]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[14]  Jin Sun,et al.  Complete mitochondrial genome of the brain coral Platygyra carnosus , 2013, Mitochondrial DNA.

[15]  B. Vanhoorne,et al.  World Register of Marine Species , 2013 .

[16]  N. Knowlton,et al.  Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia) , 2012 .

[17]  P. Galli,et al.  Molecular phylogeny of the Robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective. , 2012, Molecular phylogenetics and evolution.

[18]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[19]  Danwei Huang Threatened Reef Corals of the World , 2012, PloS one.

[20]  A. Baird,et al.  Cleaning up the 'Bigmessidae': Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae , 2011, BMC Evolutionary Biology.

[21]  J. Stolarski,et al.  Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae , 2011, Journal of morphology.

[22]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[23]  N. Knowlton,et al.  Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria) , 2008, PloS one.

[24]  Björn Canbäck,et al.  ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences , 2008, Bioinform..

[25]  S. France,et al.  The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria:Anthozoa:Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. , 2007, Molecular phylogenetics and evolution.

[26]  Michael Lynch,et al.  Mutation Pressure and the Evolution of Organelle Genomic Architecture , 2006, Science.

[27]  N. Knowlton,et al.  Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia) , 2005, Coral Reefs.

[28]  N. Knowlton,et al.  Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals , 2004, Nature.

[29]  J. Cortés Corals of the world , 2001 .

[30]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[31]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[32]  T. Kocher,et al.  Mitogenomics: digging deeper with complete mitochondrial genomes. , 1999, Trends in ecology & evolution.

[33]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[34]  N. Perna,et al.  Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 1995, Journal of Molecular Evolution.

[35]  A. E. Verrill XXVI.—Classification of Polyps. (Extract condensed from a synopsis of the Polypi of the North Pacific exploring expedition under Captains Ringgold and Rodgers, U.S.N , 1865 .

[36]  Danwei Huang,et al.  The new systematics of scleractinia: Integrating molecular and morphological evidence , 2016 .

[37]  A. Viarengo,et al.  Corrigendum to “Carbonic anhydrase activity in Mytilus galloprovincialis digestive gland: Sensitivity to heavy metal exposure” [Comparative Biochemistry and Physiology, Part C 152 (2010) 241–247] , 2011 .

[38]  R. Meier,et al.  More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. , 2009, Molecular phylogenetics and evolution.

[39]  Chaolun Allen Chen,et al.  Comparative Analyses of Coding and Noncoding DNA Regions Indicate that Acropora (Anthozoa: Scleractina) Possesses a Similar Evolutionary Tempo of Nuclear vs. Mitochondrial Genomes as in Plants , 2008, Marine Biotechnology.

[40]  Chaolun Allen Chen,et al.  The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. , 2008, Molecular phylogenetics and evolution.

[41]  H. Mewes,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2004 .

[42]  Nicole T. Perna,et al.  Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 2004, Journal of Molecular Evolution.

[43]  P. Hagerman,et al.  The Mitochondrial Genome of Acropora tenuis (Cnidaria; Scleractinia) Contains a Large Group I Intron and a Candidate Control Region , 2002, Journal of Molecular Evolution.

[44]  J. Veron New Scleractinia from Australian coral reefs , 1985 .

[45]  J. Chevalier,et al.  Les Scléractiniaires de la Mélanésie française : Nouvelle-Calédonie, Iles Chesterfield, Iles Loyauté, Nouvelles Hébrides , 1971 .

[46]  T. W. Vaughan,et al.  Revision of the Suborders Families, and Genera of the Scleractinia , 1943 .

[47]  J. Umbgrove Madreporaria from the Togian Reefs (Gulf of Tomini, North-Celebes) , 1940 .

[48]  矢部 長克,et al.  Recent reef-building corals from Japan and the South Sea Islands under the Japanese mandate , 1936 .

[49]  J. Gardiner Catalogue of the Madreporarian Corals in the British Museum (Natural History) Vol 7: A Monograph of the recent Meandroid Astrœidœ , 1929, Nature.

[50]  J. E. Hoffmeister Some corals from American Samoa and the Fiji Islands , 1925 .

[51]  L. Faustino Recent madreporaria of the Philippine Islands , 1923 .