Weighted a priori estimates for the swirl component of the vorticity of the axisymmetric Navier-Stokes system

Abstract We study the axisymmetric Navier–Stokes equations. By invoking a two-dimensional Gagliardo–Nirenberg inequality, we could show r 7 2 − 4 p ω θ ∈ L ∞ ( 0 , T ; L p ( R 3 ) ) , for any 3 2 ≤ p ≤ 8 5 .

[1]  Zujin Zhang New a priori estimates for the axisymmetric Navier-Stokes system , 2019, Appl. Math. Lett..

[2]  Adam Kubica Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations , 2012 .

[3]  Zhen Lei,et al.  A Priori Bound on the Velocity in Axially Symmetric Navier–Stokes Equations , 2013 .

[4]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[5]  Zujin Zhang On weighted regularity criteria for the axisymmetric Navier-Stokes equations , 2017, Appl. Math. Comput..

[6]  Dongho Chae,et al.  Digital Object Identifier (DOI) 10.1007/s002090100317 , 2002 .

[7]  Dongyi Wei Regularity Criterion to the axially symmetric Navier-Stokes Equations , 2015 .

[8]  Rej Kreml,et al.  A REGULARITY CRITERION FOR THE ANGULAR VELOCITY COMPONENT IN AXISYMMETRIC NAVIER-STOKES EQUATIONS , 2007 .

[9]  M. R. Ukhovskii,et al.  Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .

[10]  Milan Pokorný,et al.  On Axially Symmetric Flows in $mathbb R^3$ , 1999 .

[11]  Vladimir Sverak,et al.  Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations , 2015, 1510.01036.

[12]  Hui Chen,et al.  Regularity of 3D axisymmetric Navier-Stokes equations , 2015, 1505.00905.

[13]  Ping Zhang,et al.  Global Axisymmetric Solutions to Three-Dimensional Navier–Stokes System , 2014 .

[14]  Joanna Renclawowicz,et al.  On Some Regularity Criteria for Axisymmetric Navier–Stokes Equations , 2018, Journal of Mathematical Fluid Mechanics.

[15]  Qi S. Zhang,et al.  A Priori Bounds for the Vorticity of Axis Symmetric Solutions to the Navier-Stokes Equations , 2008, 0811.1609.

[16]  Hugo Beirao da Veiga,et al.  Open problems concerning the Holder continuity of the direction of vorticity for the Navier-Stokes equations , 2016, 1604.08083.

[17]  Zujin Zhang A pointwise regularity criterion for axisymmetric Navier–Stokes system , 2018 .

[18]  Qionglei Chen,et al.  Regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations , 2007 .

[19]  Zujin Zhang,et al.  Refined a priori estimates for the axisymmetric Navier-Stokes equations , 2017 .

[20]  Milan Pokorný A regularity criterion for the angular velocity component in the case of axisymmetric Navier–Stokes equations , 2002 .

[21]  Zhen Lei,et al.  Criticality of the Axially Symmetric Navier-Stokes Equations , 2015 .

[22]  Zhen Lei,et al.  A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations , 2010, 1011.5066.

[23]  Zujin Zhang Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl , 2018, Comput. Math. Appl..

[24]  Milan Pokorný,et al.  AXISYMMETRIC FLOW OF NAVIER-STOKES FLUID IN THE WHOLE SPACE WITH NON-ZERO ANGULAR VELOCITY COMPONENT , 2001 .

[25]  Sadek Gala,et al.  On the regularity criterion of axisymmetric weak solutions to the 3D NavierStokes equations , 2011 .

[26]  Zujin Zhang Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data , 2016 .