Code Generators for Mathematical Functions
暂无分享,去创建一个
Florent de Dinechin | Nicolas Brunie | Christoph Quirin Lauter | Olga Kupriianova | F. D. Dinechin | C. Lauter | O. Kupriianova | Nicolas Brunie
[1] Richard W. Vuduc,et al. Methods for High-Throughput Computation of Elementary Functions , 2013, PPAM.
[2] Nicolas Brisebarre,et al. Efficient polynomial L-approximations , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).
[3] J. Apostolakis,et al. Final Report of the ATLAS Detector Simulation Performance Assessment Group , 2010 .
[4] Ping Tak Peter Tang. Table-driven implementation of the logarithm function in IEEE floating-point arithmetic , 1990, TOMS.
[5] George Paul,et al. Should the Elementary Function Library Be Incorporated Into Computer Instruction Sets? , 1976, TOMS.
[6] Jean-Michel Muller,et al. Elementary Functions: Algorithms and Implementation , 1997 .
[7] Christoph Quirin Lauter,et al. Replacing Branches by Polynomials in Vectorizable Elementary Functions , 2014, SCAN.
[8] John Harrison,et al. Scientific Computing on Itanium-Based Systems , 2002 .
[9] Franz Franchetti,et al. SPIRAL: Code Generation for DSP Transforms , 2005, Proceedings of the IEEE.
[10] Sandra Loosemore,et al. The GNU C Library Reference Manual , 2001 .
[11] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[12] Shmuel Gal,et al. An accurate elementary mathematical library for the IEEE floating point standard , 1991, TOMS.
[13] James Demmel,et al. IEEE Standard for Floating-Point Arithmetic , 2008 .
[14] Wayne Luk,et al. Hierarchical segmentation schemes for function evaluation , 2003, Proceedings. 2003 IEEE International Conference on Field-Programmable Technology (FPT) (IEEE Cat. No.03EX798).
[15] R. C. Whaley,et al. Minimizing development and maintenance costs in supporting persistently optimized BLAS , 2005, Softw. Pract. Exp..
[16] Florent de Dinechin,et al. Certifying the Floating-Point Implementation of an Elementary Function Using Gappa , 2011, IEEE Transactions on Computers.
[17] Christoph Quirin Lauter,et al. Certified and Fast Computation of Supremum Norms of Approximation Errors , 2009, 2009 19th IEEE Symposium on Computer Arithmetic.
[18] Abraham Ziv,et al. Fast evaluation of elementary mathematical functions with correctly rounded last bit , 1991, TOMS.
[19] Christoph Quirin Lauter,et al. Sollya: An Environment for the Development of Numerical Codes , 2010, ICMS.
[20] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[21] Peter W. Markstein,et al. IA-64 and elementary functions - speed and precision , 2000 .
[22] Christoph Quirin Lauter,et al. A domain splitting algorithm for the mathematical functions code generator , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.
[23] Ping Tak Peter Tang. Table-driven implementation of the exponential function in IEEE floating-point arithmetic , 1989, TOMS.
[24] Peter W. Markstein. Accelerating sine and cosine evaluation with compiler assistance , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.
[25] Jean-Michel Muller,et al. Fast and correctly rounded logarithms in double-precision , 2007, RAIRO Theor. Informatics Appl..
[26] J. Muller. Elementary Functions, Algorithms and Implementation, 2nd Edition , 2006 .
[27] Christophe Mouilleron,et al. Automatic Generation of Fast and Certified Code for Polynomial Evaluation , 2011, 2011 IEEE 20th Symposium on Computer Arithmetic.
[28] Nachiket Kapre,et al. Accelerating SPICE Model-Evaluation using FPGAs , 2009, 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines.
[29] W. Marsden. I and J , 2012 .
[30] Ping Tak Peter Tang. Table-driven implementation of the Expm1 function in IEEE floating-point arithmetic , 1992, TOMS.