Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem

This paper presents a preconditioner for non-overlapping Schwarz methods applied to the Helmholtz problem. Starting from a simple analytic example, we show how such a preconditioner can be designed by approximating the inverse of the iteration operator for a layered partitioning of the domain. The preconditioner works by propagating information globally by concurrently sweeping in both directions over the subdomains, and can be interpreted as a coarse grid for the domain decomposition method. The resulting algorithm is shown to converge very fast, independently of the number of subdomains and frequency. The preconditioner has the advantage that, like the original Schwarz algorithm, it can be implemented as a matrix-free routine, with no additional preprocessing.

[1]  C. Farhat,et al.  Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems , 2000 .

[2]  Martin J. Gander,et al.  Modern Methods in Scientific Computing and Applications , 2002 .

[3]  Laurent Demanet,et al.  A DDM double sweep preconditioner for the Helmholtz equation with matrix probing of the DtN map , 2013 .

[4]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[5]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[6]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[7]  Yassine Boubendir,et al.  A FETI-like domain decomposition method for coupling finite elements and boundary elements in large-size problems of acoustic scattering , 2007 .

[8]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[9]  Y. Boubendir,et al.  Dealing with Cross-Points in a Non-Overlapping Domain Decomposition Solution of the Helmholtz Equation , 2003 .

[10]  Jia Zhongxiao,et al.  The convergence of Krylov subspace methods for large unsymmetric linear systems , 1998 .

[11]  Karim Ramdani,et al.  Selective focusing on small scatterers in acoustic waveguides using time reversal mirrors , 2007 .

[12]  Martin J. Gander,et al.  Domain Decomposition Methods for the Helmholtz Equation: A Numerical Investigation , 2013, Domain Decomposition Methods in Science and Engineering XX.

[13]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[14]  Christophe Geuzaine,et al.  Parallel Double Sweep Preconditioner for the Optimized Schwarz Algorithm Applied to High Frequency Helmholtz and Maxwell Equations , 2016 .

[15]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[16]  Christiaan C. Stolk,et al.  A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..

[17]  Christophe Geuzaine,et al.  A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..

[18]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[19]  Lexing Ying,et al.  A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations , 2012, SIAM J. Sci. Comput..

[20]  O. Widlund,et al.  Some Domain Decomposition Algorithms for Elliptic Problems , 2011 .

[21]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[22]  Frédéric Magoulès,et al.  Approximation of Optimal Interface Boundary Conditions for Two-Lagrange Multiplier FETI Method , 2005 .

[23]  Dinh Van Huynh,et al.  Algebra and Its Applications , 2006 .

[24]  Man Chun Leung,et al.  Unbounded positive entire solutions of rotationally symmetric harmonic map equations , 2000 .

[25]  Laurent Demanet,et al.  Matrix Probing and its Conditioning , 2012, SIAM J. Numer. Anal..

[26]  Frédéric Nataf,et al.  Interface connections in domain decomposition methods , 2002 .

[27]  Nai Fu Chen Inverse iteration on defective matrices , 1977 .

[28]  Bruno Després Méthodes de décomposition de domaine pour la propagation d'ondes en régime harmonique. Le théorème de Borg pour l'équation de Hill vectorielle , 1991 .

[29]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[30]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[31]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[32]  Yassine Boubendir,et al.  Coupling of a non‐overlapping domain decomposition method for a nodal finite element method with a boundary element method , 2008 .

[33]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[34]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[35]  Patrick Joly,et al.  Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .

[36]  Martin J. Gander,et al.  The Optimized Schwarz Method with a Coarse Grid Correction , 2012, SIAM J. Sci. Comput..

[37]  Olof B. Widlund,et al.  29. Optimization of Interface Operator Based on Algebraic Approach , 2003 .

[38]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[39]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[40]  Charbel Farhat,et al.  A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers , 2009 .

[41]  Patrick Joly,et al.  Mathematical and Numerical Aspects of Wave Propagation Phenomena , 1991 .

[42]  Laurent Demanet,et al.  Compressed Absorbing Boundary Conditions via Matrix Probing , 2014, SIAM J. Numer. Anal..

[43]  Yassine Boubendir,et al.  An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem , 2007 .

[44]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[45]  Frédéric Nataf,et al.  Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains , 1997 .

[46]  Charbel Farhat,et al.  A non Overlapping Domain Decomposition Method for the Exterior Helmholtz Problem , 1997 .