Genome-wide mutagenesis resulting from topoisomerase 1-processing of unrepaired ribonucleotides in DNA.

[1]  Martin A. M. Reijns,et al.  Epithelial RNase H2 Maintains Genome Integrity and Prevents Intestinal Tumorigenesis in Mice , 2019, Gastroenterology.

[2]  Martin A. M. Reijns,et al.  Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin. , 2018, Cancer research.

[3]  Christopher A. Lavender,et al.  Muver, a computational framework for accurately calling accumulated mutations , 2018, BMC Genomics.

[4]  J. L. Argueso,et al.  Both R-loop removal and ribonucleotide excision repair activities of RNase H2 contribute substantially to chromosome stability. , 2017, DNA repair.

[5]  Y. Pommier,et al.  Topoisomerase I‐mediated cleavage at unrepaired ribonucleotides generates DNA double‐strand breaks , 2017, The EMBO journal.

[6]  T. Kunkel,et al.  DNA Polymerases Divide the Labor of Genome Replication. , 2016, Trends in cell biology.

[7]  T. Kunkel,et al.  Processing ribonucleotides incorporated during eukaryotic DNA replication , 2016, Nature Reviews Molecular Cell Biology.

[8]  Y. Pommier,et al.  Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo , 2016, Nucleic acids research.

[9]  T. Petes,et al.  Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity , 2015, Genetics.

[10]  T. Kunkel,et al.  Stimulation of Chromosomal Rearrangements by Ribonucleotides , 2015, Genetics.

[11]  P. Burgers,et al.  Error‐free and mutagenic processing of topoisomerase 1‐provoked damage at genomic ribonucleotides , 2015, The EMBO journal.

[12]  Y. Pommier,et al.  Topoisomerase I Alone Is Sufficient to Produce Short DNA Deletions and Can Also Reverse Nicks at Ribonucleotide Sites* , 2015, The Journal of Biological Chemistry.

[13]  T. Kunkel,et al.  Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific , 2015, Nature Structural &Molecular Biology.

[14]  T. Kunkel,et al.  Differences in genome-wide repeat sequence instability conferred by proofreading and mismatch repair defects , 2015, Nucleic acids research.

[15]  J. Hesselberth,et al.  Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA , 2015, Nature Methods.

[16]  L. Lagae,et al.  Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1 , 2015, American journal of medical genetics. Part A.

[17]  Martin A. M. Reijns,et al.  Lagging strand replication shapes the mutational landscape of the genome , 2015, Nature.

[18]  Carolin A. Müller,et al.  A global profile of replicative polymerase usage , 2014, Nature Structural &Molecular Biology.

[19]  T. Kunkel,et al.  Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation , 2014, Nature Structural &Molecular Biology.

[20]  T. Kunkel,et al.  Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition , 2014, Genome research.

[21]  P. Sung,et al.  Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms , 2014, Nature.

[22]  P. Sung,et al.  Avoidance of rNMP-induced mutations via RNaseH2 and Srs2-Exo1 dependent mechanisms , 2014, Nature.

[23]  R. Kolodner,et al.  A Saccharomyces cerevisiae RNase H2 Interaction Network Functions To Suppress Genome Instability , 2014, Molecular and Cellular Biology.

[24]  T. Kunkel,et al.  Ribonucleotides are signals for mismatch repair of leading-strand replication errors. , 2013, Molecular cell.

[25]  Martin A. M. Reijns,et al.  Ribonucleotides Misincorporated into DNA Act as Strand-Discrimination Signals in Eukaryotic Mismatch Repair , 2013, Molecular cell.

[26]  T. Kunkel,et al.  Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. , 2013, Molecular cell.

[27]  Nayun Kim,et al.  Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. , 2013, DNA repair.

[28]  T. Kunkel,et al.  Mismatch Repair Balances Leading and Lagging Strand DNA Replication Fidelity , 2012, PLoS genetics.

[29]  T. Kunkel,et al.  RNase H2-initiated ribonucleotide excision repair. , 2012, Molecular cell.

[30]  Danielle L. Watt,et al.  RNase H and Postreplication Repair Protect Cells from Ribonucleotides Incorporated in DNA , 2012, Molecular cell.

[31]  D. Koshland,et al.  RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. , 2011, Molecular cell.

[32]  Miki Ii,et al.  Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. , 2011, Mutation research.

[33]  Y. Pommier,et al.  Mutagenic Processing of Ribonucleotides in DNA by Yeast Topoisomerase I , 2011, Science.

[34]  T. Kunkel,et al.  Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε. , 2011, DNA repair.

[35]  Martin A. M. Reijns,et al.  PCNA directs type 2 RNase H activity on DNA replication and repair substrates , 2011, Nucleic acids research.

[36]  Andres A. Larrea,et al.  Genome-wide model for the normal eukaryotic DNA replication fork , 2010, Proceedings of the National Academy of Sciences.

[37]  Danielle L. Watt,et al.  Genome instability due to ribonucleotide incorporation into DNA , 2010, Nature chemical biology.

[38]  Danielle L. Watt,et al.  Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases , 2010, Proceedings of the National Academy of Sciences.

[39]  M. DePamphilis,et al.  Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex , 2008, Nucleic acids research.

[40]  T. Kunkel,et al.  Division of labor at the eukaryotic replication fork. , 2008, Molecular cell.

[41]  A. Green,et al.  Clinical and molecular phenotype of Aicardi-Goutieres syndrome. , 2007, American journal of human genetics.

[42]  T. Kunkel,et al.  Yeast DNA Polymerase ε Participates in Leading-Strand DNA Replication , 2007, Science.

[43]  T. Kunkel,et al.  Yeast DNA polymerase epsilon participates in leading-strand DNA replication. , 2007, Science.

[44]  C. Ponting,et al.  Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection , 2006, Nature Genetics.

[45]  J. Game,et al.  Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Kunkel,et al.  In Vivo Consequences of Putative Active Site Mutations in Yeast DNA Polymerases α, ε, δ, and ζ , 2001 .

[47]  T. Kunkel,et al.  In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. , 2001, Genetics.

[48]  J. Mccusker,et al.  Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae , 1999, Yeast.

[49]  J. Walder,et al.  Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. , 1993, Biochimie.

[50]  H. Klein,et al.  Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. , 1988, Genetics.