Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes

Abstract We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.

[1]  A. Kurganov,et al.  On the Reduction of Numerical Dissipation in Central-Upwind Schemes , 2006 .

[2]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[3]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[4]  Siddhartha Mishra,et al.  A well-balanced finite volume scheme for the Euler equations with gravitation - The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification , 2016 .

[5]  Manuel Jesús Castro Díaz,et al.  On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas , 2007, J. Comput. Phys..

[6]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[7]  Knut-Andreas Lie,et al.  On the Artificial Compression Method for Second-Order Nonoscillatory Central Difference Schemes for Systems of Conservation Laws , 2002, SIAM J. Sci. Comput..

[8]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[9]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[10]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[11]  Christian Klingenberg,et al.  A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity , 2016 .

[12]  Yulong Xing,et al.  High order well-balanced schemes , 2010 .

[13]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[14]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[15]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[16]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[17]  Christian Klingenberg,et al.  A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity , 2015, SIAM J. Sci. Comput..

[18]  Mária Lukácová-Medvid'ová,et al.  Well-balanced schemes for the shallow water equations with Coriolis forces , 2018, Numerische Mathematik.

[19]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[20]  Eitan Tadmor,et al.  Solution of two‐dimensional Riemann problems for gas dynamics without Riemann problem solvers , 2002 .

[21]  Yulong Xing,et al.  High order finite volume WENO schemes for the Euler equations under gravitational fields , 2016, J. Comput. Phys..

[22]  Shi Jin,et al.  A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .

[23]  Yulong Xing,et al.  On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations , 2011, J. Sci. Comput..

[24]  G. Petrova,et al.  A SECOND-ORDER WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME FOR THE SAINT-VENANT SYSTEM ∗ , 2007 .

[25]  Kun Xu,et al.  A Well-Balanced Kinetic Scheme for Gas Dynamic Equations under Gravitational Field , 2010 .

[26]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[27]  S. Mishra,et al.  Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..

[28]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[29]  Jun Luo,et al.  A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..

[30]  Christian Klingenberg,et al.  Well-Balanced Unstaggered Central Schemes for the Euler Equations with Gravitation , 2016, SIAM J. Sci. Comput..

[31]  RicchiutoMario,et al.  Stabilized residual distribution for shallow water simulations , 2009 .

[32]  Randall J. LeVeque,et al.  Wave Propagation Methods for Conservation Laws with Source Terms , 1999 .

[33]  Yulong Xing,et al.  High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields , 2013, J. Sci. Comput..

[34]  Eitan Tadmor,et al.  Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography , 2011, J. Comput. Phys..

[35]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[36]  Kun Xu,et al.  A three-dimensional multidimensional gas-kinetic scheme for the Navier-Stokes equations under gravitational fields , 2007, J. Comput. Phys..