Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration

[1]  T. Lüscher,et al.  Therapeutic Implications , 2020, The Endothelium: Modulator of Cardiovascular Function.

[2]  Shenmin Zhang,et al.  Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus , 2017, Circulation.

[3]  Jin Yao,et al.  Long non‐coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling , 2016, EMBO molecular medicine.

[4]  Yinghui Chen,et al.  Roles of Circular RNAs in Neurologic Disease , 2016, Front. Mol. Neurosci..

[5]  Yan Li,et al.  Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs , 2016, Nature Communications.

[6]  Li Feng,et al.  MicroRNA-217 inhibits cell proliferation and invasion by targeting Runx2 in human glioma. , 2016, American journal of translational research.

[7]  Elena Vecino,et al.  Glia–neuron interactions in the mammalian retina , 2016, Progress in Retinal and Eye Research.

[8]  R. Parker,et al.  Circular RNAs: diversity of form and function , 2014, RNA.

[9]  D. Bartel,et al.  Expanded identification and characterization of mammalian circular RNAs , 2014, Genome Biology.

[10]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[11]  G. Stein,et al.  The cancer‐related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines , 2013, Journal of cellular physiology.

[12]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[13]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[14]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[15]  L. Coolen,et al.  The Transcription Factor Runx2 Is under Circadian Control in the Suprachiasmatic Nucleus and Functions in the Control of Rhythmic Behavior , 2013, PloS one.

[16]  J. Goldberg,et al.  Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. , 2012, Ophthalmology.

[17]  B. Morquette,et al.  The molecular basis of retinal ganglion cell death in glaucoma , 2012, Progress in Retinal and Eye Research.

[18]  G. Aguirre,et al.  Altered expression of retinal molecular markers in the canine RPE65 model of Leber congenital amaurosis. , 2010, Investigative ophthalmology & visual science.

[19]  M. Zusso,et al.  Runx transcription factors: Lineage‐specific regulators of neuronal precursor cell proliferation and post‐mitotic neuron subtype development , 2009, Journal of cellular biochemistry.

[20]  C. Lengner,et al.  Expression of Runx2 transcription factor in non‐skeletal tissues, sperm and brain , 2008, Journal of cellular physiology.

[21]  A. Waha,et al.  Runx2 is expressed in human glioma cells and mediates the expression of galectin‐3 , 2008, Journal of neuroscience research.

[22]  A. Passaniti,et al.  Cell Cycle-dependent Phosphorylation of the RUNX2 Transcription Factor by cdc2 Regulates Endothelial Cell Proliferation* , 2006, Journal of Biological Chemistry.

[23]  L. Kagemann,et al.  Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration , 1999, Progress in Retinal and Eye Research.

[24]  H. Quigley,et al.  Neuronal death in glaucoma , 1999, Progress in Retinal and Eye Research.

[25]  A. Vernadakis,et al.  GLIA-NEURON INTERCOMMUNICATIONS AND SYNAPTIC PLASTICITY , 1996, Progress in Neurobiology.

[26]  R. Apte,et al.  Monitoring Neurodegeneration in Glaucoma: Therapeutic Implications. , 2018, Trends in molecular medicine.

[27]  S. Shaham Glia-neuron interactions in nervous system function and development. , 2005, Current topics in developmental biology.

[28]  X. Martin [Genetics of glaucoma]. , 1994, Revue medicale de la Suisse romande.

[29]  Robert C. Wolpert,et al.  A Review of the , 1985 .