Optimization of the probability of orbital angular momentum for Laguerre-Gaussian beam in Kolmogorov and non-Kolmogorov turbulence.

We derive the probabilities of the signal OAM state and crosstalk OAM state for a Laguerre-Gaussian (LG) beam propagating through Kolmogorov and Non-Kolmogorov turbulence, and derive the accurate analytical function of the probability for the received OAM state modulated by an arbitrary receiver aperture. The probability of the detected OAM state with a receiver aperture for different values of the radius is demonstrated numerically. Our numerical results show that the probability of the signal OAM state remains almost invariant when the radius of the receiver aperture varies. The probability of the crosstalk OAM state decreases with the decrease of the radius of the receiver aperture, thus it can be optimized by choosing a suitable value of the radius of the receiver aperture. Our results will be useful in free-space optical communications.

[1]  Ting Lei,et al.  The Orbital Angular Momentum Spreading for Cylindrical Vector Beams in Turbulent Atmosphere , 2017, IEEE Photonics Journal.

[2]  Robert W Boyd,et al.  Influence of atmospheric turbulence on states of light carrying orbital angular momentum. , 2012, Optics letters.

[3]  Qun Wu,et al.  Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. , 2018, Optics express.

[4]  Yun Zhu,et al.  Effects of non-Kolmogorov turbulence on the spiral spectrum of Hypergeometric-Gaussian laser beams. , 2015, Optics express.

[5]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[6]  Shilie Zheng,et al.  Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture. , 2015, Optics express.

[7]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.

[8]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[9]  Italo Toselli,et al.  Free space optical system performance for laser beam propagation through non-Kolmogorov turbulence , 2007, SPIE LASE.

[10]  Yangjian Cai,et al.  Second-order statistics of a twisted gaussian Schell-model beam in turbulent atmosphere. , 2010, Optics express.

[11]  Li-Xiang Hu,et al.  Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system. , 2006, Optics letters.

[12]  X. Chu,et al.  Compensation for the orbital angular momentum of a vortex beam in turbulent atmosphere by adaptive optics , 2018 .

[13]  M. Neifeld,et al.  Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. , 2008, Applied optics.

[14]  Jicheng Wang,et al.  Orbital-angular-momentum photons for optical communication in non-Kolmogorov atmospheric turbulence , 2018, Optics Communications.

[15]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[16]  Z. Li,et al.  Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams , 2017, Scientific Reports.

[17]  Propagation of rotational field correlation through atmospheric turbulence. , 2014, Optics letters.

[18]  Xiao-jun Liu,et al.  Approximate description for Bessel, Bessel–Gauss, and Gaussian beams with finite aperture , 1999 .

[19]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[20]  X. Chu,et al.  Average intensity of flattened Gaussian beam in non-Kolmogorov turbulence , 2011 .

[21]  W. H. Carter,et al.  Spot size and divergence for Hermite Gaussian beams of any order. , 1980, Applied optics.

[22]  Changyuan Yu,et al.  Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings , 2015, Light: Science & Applications.

[23]  V P Lukin,et al.  Causes of non-Kolmogorov turbulence in the atmosphere. , 2016, Applied optics.

[24]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[25]  O. Korotkova,et al.  Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence. , 2010, Optics express.

[26]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[27]  Jian Wang,et al.  Advances in communications using optical vortices , 2016 .

[28]  David L. Fried,et al.  Aperture Averaging of Scintillation , 1967 .

[29]  Yuesong Jiang,et al.  Spreading of spiral spectrum of Bessel–Gaussian beam in non-Kolmogorov turbulence , 2014 .