Cloning of a probable potassium channel gene from mouse brain

[1]  P. Spierer,et al.  Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. , 1988, The EMBO journal.

[2]  Y. Jan,et al.  Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes , 1988, Nature.

[3]  Y. Jan,et al.  Multiple potassium–channel components are produced by alternative splicing at the Shaker locus in Drosophila , 1988, Nature.

[4]  O. Pongs,et al.  Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA channel transcript with homology to vertebrate Na+ channel , 1987, The EMBO journal.

[5]  Y. Jan,et al.  Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. , 1987, Science.

[6]  L. Salkoff,et al.  Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. , 1987, Science.

[7]  Y. Jan,et al.  Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. , 1987, Science.

[8]  M. Tanouye,et al.  Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel , 1987, Cell.

[9]  V. Flockerzi,et al.  Primary structure of the receptor for calcium channel blockers from skeletal muscle , 1987, Nature.

[10]  E. Gundelfinger,et al.  The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors , 1987, Nature.

[11]  J. Byrne Cellular analysis of associative learning. , 1987, Physiological reviews.

[12]  E. Gundelfinger,et al.  Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila , 1986, The EMBO journal.

[13]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[14]  H. Takeshima,et al.  Existence of distinct sodium channel messenger RNAs in rat brain , 1986, Nature.

[15]  M. Kozak Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes , 1986, Cell.

[16]  H. M. Martinez,et al.  A multiple sequence alignment program , 1986, Nucleic Acids Res..

[17]  W. Catterall,et al.  Molecular properties of voltage-sensitive sodium channels. , 1986, Annual review of biochemistry.

[18]  H. Guy,et al.  Molecular model of the action potential sodium channel. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Greenblatt,et al.  The structure of the voltage‐sensitive sodium channel , 1985, FEBS letters.

[20]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[21]  A. Breeze,et al.  Identification by cross‐linking of a neuronal acceptor protein for dendrotoxin, a convulsant polypeptide , 1984, FEBS letters.

[22]  P. Seeburg,et al.  The structure of eight distinct cloned human leukocyte interferon cDNAs , 1981, Nature.

[23]  S. C. Hubbard,et al.  Synthesis and processing of asparagine-linked oligosaccharides. , 1981, Annual review of biochemistry.

[24]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Walter Gilbert,et al.  The evolution of genes: the chicken preproinsulin gene , 1980, Cell.

[26]  M. Kirschner,et al.  Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes , 1980, Cell.

[27]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Krebs,et al.  Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. , 1977, The Journal of biological chemistry.