EXTRUSION IN VITRO AFTER CHRONIC EXPOSURE OF RAINBOW TROUT TO MODERATE ENVmONMENTAL HYPOXIA

BY S. THOMAS', R. KINKEAD, P. J. WALSH', C. M. WOOD' AND S. F. PERRY Department of Biology, University of Ottawa, 30 George Glinski, Ottawa, Ontario, Canada, 2 CNRS, Laboratoire de Physiologie Animale, Faculte' des Sciences et Techniques, University de Bretagne Occidentale, 6 Avenue Victor he Gorgeu, F-29287 Brest, France, Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA and Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 Canada

[1]  '. STEVEF.PERRY Control and coordination of gas transfer in fishes , 2007 .

[2]  S. Perry,et al.  Absence of adrenergic red cell pH and oxygen content regulation in American eel (Anguilla rostrata) during hypercapnic acidosis in vivo and in vitro , 1990, Journal of Comparative Physiology B.

[3]  M. Nikinmaa Adrenergic regulation of haemoglobin oxygen affinity in rainbow trout red cells , 1983, Journal of comparative physiology.

[4]  S. Perry,et al.  Adrenergic involvement in blood oxygen transport and acid-base balance during hypercapnic acidosis in the Rainbow Trout,Salmo gairdneri , 2004, Journal of Comparative Physiology B.

[5]  N. Christensen,et al.  Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout , 2004, Journal of Comparative Physiology B.

[6]  F. Jensen,et al.  Kinetics of the acclimational responses of tench to combined hypoxia and hypercapnia , 2004, Journal of Comparative Physiology B.

[7]  M. Nikinmaa,et al.  Regulation of acid and ion transfer across the membrane of nucleated erythrocytes , 1989 .

[8]  S. Perry,et al.  Differential Approaches to Blood Acid-Base Regulation during Exposure to Prolonged Hypercapnia in Two Freshwater Teleosts: The Rainbow Trout (Salmo gairdneri) and the American Eel (Anguilla rostrata) , 1989, Physiological Zoology.

[9]  S. Perry,et al.  The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri). , 1989, Respiration physiology.

[10]  S. Perry,et al.  Evidence that hypoxemia promotes catecholamine release during hypercapnic acidosis in rainbow trout (Salmo gairdneri). , 1989, Respiration physiology.

[11]  R. Boutilier,et al.  Metabolic-membrane coupling in red blood cells of trout: the effects of anoxia and adrenergic stimulation. , 1989, The Journal of experimental biology.

[12]  D. Randall,et al.  The functional significance of adrenergic pH regulation in fish erythrocytes , 1989 .

[13]  G. Claireaux,et al.  Adaptive respiratory responses of trout to acute hypoxia. III. Ion movements and pH changes in the red blood cell. , 1988, Respiration physiology.

[14]  G. Claireaux,et al.  Adaptive respiratory responses of trout to acute hypoxia. II. Blood oxygen carrying properties during hypoxia. , 1988, Respiration physiology.

[15]  C. Albers,et al.  Effect of adrenaline and blood gas conditions on red cell volume and intra-erythrocytic electrolytes in the carp, Cyprinus carpio. , 1988, The Journal of experimental biology.

[16]  M. Nikinmaa,et al.  The adrenergic responses of carp (Cyprinus carpio) red cells: effects of PO2 and pH. , 1988, The Journal of experimental biology.

[17]  R. Motais,et al.  Desensitization by external Na of the cyclic AMP-dependent Na+/H+ antiporter in trout red blood cells , 1988, The Journal of general physiology.

[18]  G. Dobson,et al.  Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): metabolic and respiratory adaptations. , 1988, Respiration physiology.

[19]  N. Christensen,et al.  Potency of adrenaline and noradrenaline for beta-adrenergic proton extrusion from red cells of rainbow trout, Salmo gairdneri. , 1988, The Journal of experimental biology.

[20]  C. Wood,et al.  Regulation of blood oxygen transport and red cell pHi after exhaustive activity in rainbow trout (Salmo gairdneri) and starry flounder (Platichthys stellatus). , 1987, The Journal of experimental biology.

[21]  M. Guibbolini,et al.  Neurohypophyseal peptide inhibition of adenylate cyclase activity in fish gills The effect of environmental salinity , 1987 .

[22]  R. Motais,et al.  The control of Na+/H+ exchange by molecular oxygen in trout erythrocytes. A possible role of hemoglobin as a transducer , 1987, The Journal of general physiology.

[23]  R. Motais,et al.  Cell Volume Control by Catecholamines in Erythrocytes , 1987 .

[24]  J. Steffensen,et al.  Control of Red Cell Volume and pH in Trout: Effects of Isoproterenol, Transport Inhibitors, and Extracellular pH in Bicarbonate/Carbon Dioxide-Buffered Media , 1987 .

[25]  S. Perry,et al.  Hypercapnic acidosis in the rainbow trout (Salmo gairdneri). I. Branchial ionic fluxes and blood acid–base status , 1987 .

[26]  S. I. Perry,et al.  The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri. I. Blood respiratory, acid-base and ionic states. , 1987, The Journal of experimental biology.

[27]  B. Fiévet,et al.  Role of adrenergic-dependent H+ release from red cells in acidosis induced by hypoxia in trout. , 1987, The American journal of physiology.

[28]  R. Motais,et al.  Ion movements and volume changes induced by catecholamines in erythrocytes of rainbow trout: effect of pH. , 1987, The Journal of physiology.

[29]  M. Nikinmaa,et al.  Red cell function of carp (Cyprinus carpio) in acute hypoxia. , 1987, Experimental biology.

[30]  R. Motais,et al.  Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport? , 1986, The Journal of general physiology.

[31]  M. Nikinmaa Control of red cell pH in teleost fishes , 1986 .

[32]  P. A. Richardson,et al.  Adrenalin-induced Na+/H+ exchange in trout erythrocytes and its effects upon oxygen-carrying capacity , 1985 .

[33]  R. Motais,et al.  A transient sodium‐hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri. , 1984, The Journal of physiology.

[34]  M. Houslay,et al.  Insulin controls intracellular cyclic AMP concentrations in hepatocytes by activating specific cyclic AMP phosphodiesterases: phosphorylation of the peripheral plasma membrane enzyme. , 1984, Advances in cyclic nucleotide and protein phosphorylation research.

[35]  J. Woodward Plasma catecholamines in resting rainbow trout, Salmo gairdneri Richardson, by high pressure liquid chromatography* , 1982 .

[36]  J. Edsall Carbon Dioxide, Carbonic Acid and Bicarbonate Ion: Physical Properties and Kinetics of Interconversion , 1969 .