MAP harmonic retrieval in Gaussian colored noise with prior information

Abstract In this paper we deal with the MAP estimation of the parameters of a single complex sinusoid in Gaussian white and colored noise. We analyze the effects of modeling the frequency and amplitude as random variables, deriving the expressions of the MAP estimators, and we analytically compute the CRB's for a tone with Gaussian frequency and amplitude distributions. Moreover, we explicitly derive closed-form expressions of the optimal estimators in the case of Gaussian and Rayleigh distributed amplitude. In particular, we show that, in the colored noise case, the amplitude information can also help improving the performance of the frequency estimator, and vice versa. We propose an efficient FFT-based implementation structure of the optimal estimators, which can be further simplified when the noise can be modeled as an AR process; besides, when the estimators cannot be expressed in closed form, we propose a simple univariate optimization algorithm in order to compute the estimates. Simulation results are reported, which validate the theoretical results and witness the significant performance improvement that can be achieved embodying the parameter priors into the frequency and amplitude estimators.

[1]  Petar M. Djuric,et al.  A model selection rule for sinusoids in white Gaussian noise , 1996, IEEE Trans. Signal Process..

[2]  J. Hwang Simultaneous CFAR detection and frequency estimation of a sinusoidal signal in noise , 1992, [1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing.

[3]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[4]  Jian Li,et al.  Efficient mixed-spectrum estimation with applications to target feature extraction , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[5]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[6]  P. R. Fisk,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1971 .

[7]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[8]  P. Djurić,et al.  Bayesian spectrum estimation of harmonic signals , 1995, IEEE Signal Processing Letters.

[9]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[10]  Jian Li,et al.  Implementation of the RELAX algorithm , 1998 .

[11]  Peter T. Gough,et al.  A fast spectral estimation algorithm based on the FFT , 1994, IEEE Trans. Signal Process..

[12]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[13]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[14]  Enrico Magli,et al.  Joint statistical signal detection and estimation. Part I: Theoretical aspects of the problem , 2000, Signal Process..

[15]  Peter J. Kootsookos,et al.  Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..

[16]  Venkatesh Nagesha,et al.  Spectral analysis based on the canonical autoregressive decomposition , 1996, IEEE Trans. Signal Process..

[17]  Malcolm D. Macleod,et al.  Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones , 1998, IEEE Trans. Signal Process..

[18]  Mohammed A. Hasan,et al.  Separation of multiple time delays using new spectral estimation schemes , 1998, IEEE Trans. Signal Process..

[19]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[20]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[21]  A minimum variance single frequency estimator using recursive least squares estimate of noise statistics , 1998, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268).

[22]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[23]  Venkatesh Nagesha,et al.  Maximum likelihood estimation of signals in autoregressive noise , 1994, IEEE Trans. Signal Process..

[24]  Petar M. Djuric,et al.  Bayesian detection and estimation of cisoids in colored noise , 1995, IEEE Trans. Signal Process..

[25]  Barry G. Quinn,et al.  Estimation of frequency, amplitude, and phase from the DFT of a time series , 1997, IEEE Trans. Signal Process..

[26]  M. Evans Statistical Distributions , 2000 .

[27]  Allan Steinhardt,et al.  Thresholds in frequency estimation , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[28]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[29]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[30]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Wolfgang Niehsen,et al.  Generalized Gaussian modeling of correlated signal sources , 1999, IEEE Trans. Signal Process..

[32]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[33]  Enrico Magli,et al.  Joint statistical signal detection and estimation. Part II: a high-performance closed-loop technique , 2000, Signal Process..

[34]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[35]  Patrick Duvaut,et al.  Joint Bayesian detection and estimation of sinusoids embedded in noise , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[36]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[37]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .