Nonlinear Model Predictive Control and Dynamic Real Time Optimization for Large-scale Processes

This dissertation addresses some of the theoretical and practical issues in optimized operationsin the process industry. The current state-of-art is to decompose the optimizationinto the so-called two-layered structure, including real time optimization (RTO) and advancedcontrol. Due to model discrepancy and inconsistent time scales in different layers,this structure may render suboptimal solutions. Therefore, the dynamic real time optimization(D-RTO) or economically-oriented nonlinear model predictive control (NMPC)that directly optimizes the economic performance based on first-principle dynamic modelsof processes has become an emerging technology. However, the integration of the firstprincipledynamic models is likely to introduce large scale optimization problems, whichneed to be solved online. The associated computational delay may be cumbersome for theonline applications.We first derive a first-principle dynamic model for an industrial air separation unit (ASU).The recently developed advanced step method is used to solve both set-point tracking andeconomically-oriented NMPC online. It shows that set-point tracking NMPC based on thefirst-principle model has superior performance against that with linear data-driven model.In addition, the economically-oriented NMPC generates around 6% cost reduction comparedto set-point tracking NMPC. Moreover the advanced step method reduces the onlinecomputational delay by two orders of magnitude.Then we deal with a realistic set-point tracking control scenario that requires achievingoffset-free behavior in the presence of plant-model mismatch. Moreover, a state estimatoris used to reconstruct the plant states from outputs. We propose two formulations usingNMPC and moving horizon estimation (MHE) and we show both approaches are offsetfreeat steady state. Moreover, the analysis can be extended to NMPC coupled with othernonlinear observers. This strategy is implemented on the ASU process.After that, we study the robust stability of output-feedback NMPC in the presence of plantmodelmismatch. The Extended Kalman Filter (EKF), which is a widely-used technologyin industry is chosen as the state estimator. First we analyze the stability of the estimationerror and a separation-principle-like result indicates that the stability result is the same asthe closed-loop case. We further study the impact of this estimation error on the robuststability of the NMPC.Finally, nominal stability is analyzed for the D-RTO, i.e. economically-oriented NMPC,for cyclic processes. Moreover, two economically-oriented NMPC formulations with guaranteednominal stability are proposed. They ensure the system converges to the optimalcyclic steady state.

[1]  Jay H. Lee,et al.  An introduction to a dynamic plant-wide optimization strategy for an integrated plant , 2004, Comput. Chem. Eng..

[2]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[3]  Martin Guay,et al.  Integration of Real-time Optimization & and Model Predictive Control* *The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada. , 2009 .

[4]  Moritz Diehl,et al.  A Lyapunov Function for Economic Optimizing Model Predictive Control , 2011, IEEE Transactions on Automatic Control.

[5]  Lorenz T. Biegler,et al.  An MPEC formulation for dynamic optimization of distillation operations , 2004, Comput. Chem. Eng..

[6]  Lorenz T. Biegler,et al.  Process control strategies for constrained nonlinear systems , 1988 .

[7]  Jay H. Lee,et al.  A model-based predictive control approach to repetitive control of continuous processes with periodic operations , 2001 .

[8]  Lorenz T. Biegler,et al.  Robust nonlinear model predictive controller design based on multi-scenario formulation , 2009, 2009 American Control Conference.

[9]  Lorenz T. Biegler,et al.  Multi-Scenario-Based Robust Nonlinear Model Predictive Control with First Principle Models , 2009 .

[10]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures , 1980 .

[11]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[12]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[13]  Konrad Reif,et al.  The extended Kalman filter as an exponential observer for nonlinear systems , 1999, IEEE Trans. Signal Process..

[14]  Jay H. Lee,et al.  Extended Kalman Filter Based Nonlinear Model Predictive Control , 1993, 1993 American Control Conference.

[15]  D. Limón,et al.  Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control , 2009 .

[16]  Lorenz T. Biegler,et al.  Lyapunov stability of economically oriented NMPC for cyclic processes , 2011 .

[17]  Sten Bay Jørgensen,et al.  Unreachable Setpoints in Model Predictive Control , 2008, IEEE Transactions on Automatic Control.

[18]  W. P. M. H. Heemels,et al.  On robustness of constrained discrete-time systems to state measurement errors , 2008, Autom..

[19]  Wolfgang Marquardt,et al.  Structural Concepts for Optimization Based Control of Transient Processes , 2000 .

[20]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[21]  L. Biegler,et al.  Fast Offset-Free Nonlinear Model Predictive Control Based on Moving Horizon Estimation , 2010 .

[22]  Victor M. Zavala,et al.  Stability analysis of an approximate scheme for moving horizon estimation , 2010, Comput. Chem. Eng..

[23]  Darci Odloak,et al.  Integrating real-time optimization into the model predictive controller of the FCC system , 2002 .

[24]  R. Tournier,et al.  Steady State Optimization Inside Model Predictive Control , 1991, 1991 American Control Conference.

[25]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[26]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[27]  Jeffrey K. Uhlmann,et al.  Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.

[28]  A. Grancharova,et al.  Computational Aspects of Approximate Explicit Nonlinear Model Predictive Control , 2007 .

[29]  Oskar von Stryk,et al.  Towards Nonlinear Model-Based Predictive Optimal Control of Large-Scale Process Models with Application to Air Separation Plants , 2001 .

[30]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[31]  G. A. Hicks,et al.  Approximation methods for optimal control synthesis , 1971 .

[32]  P. Marquis,et al.  SMOC, a bridge between state space and model predictive controllers: Application to the automation of a hydrotreating unit , 1988 .

[33]  James B. Rawlings,et al.  Economic Dynamic Real-Time Optimization and Nonlinear Model-Predictive Control on Infinite Horizons , 2009 .

[34]  David R. Vinson,et al.  Air separation control technology , 2006, Comput. Chem. Eng..

[35]  Wolfgang Marquardt,et al.  Sensitivity-Based Solution Updates in Closed-Loop Dynamic Optimization , 2004 .

[36]  Lorenz T. Biegler,et al.  On-line implementation of nonlinear MPC: an experimental case study , 2000 .

[37]  Christof Büskens,et al.  Sensitivity Analysis and Real-Time Control of Parametric Optimal Control Problems Using Nonlinear Programming Methods , 2001 .

[38]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..

[39]  F. Allgöwer,et al.  Output feedback stabilization of constrained systems with nonlinear predictive control , 2003 .

[40]  Sachin C. Patwardhan,et al.  From data to nonlinear predictive control. 2. Improving regulatory performance using identified observers , 2006 .

[41]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[42]  R. Gudi,et al.  Nonlinear predictive control of irregularly sampled multirate systems using blackbox observers , 2007 .

[43]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[44]  Alberto Bemporad,et al.  Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control , 2007, IEEE Transactions on Automatic Control.

[45]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[46]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[47]  R. Donald Bartusiak,et al.  NLMPC: A Platform for Optimal Control of Feed- or Product-Flexible Manufacturing , 2007 .

[48]  L. Biegler,et al.  Nonlinear Programming Superstructure for Optimal Dynamic Operations of Simulated Moving Bed Processes , 2006 .

[49]  Johannes P. Schlöder,et al.  Real-Time Optimization for Large Scale Processes: Nonlinear Model Predictive Control of a High Purity Distillation Column , 2001 .

[50]  Lorenz T. Biegler,et al.  Dynamic Process Optimization through Adjoint Formulations and Constraint Aggregation , 1999 .

[51]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[52]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[53]  Peter Deuflhard,et al.  Numerical Treatment of Inverse Problems in Differential and Integral Equations: Proceedings of an International Workshop, Heidelberg, Fed. Rep. of Germany, August 30 - September 3, 1982 , 2012 .

[54]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[55]  Lorenz T. Biegler,et al.  Stability of a class of discrete-time nonlinear recursive observers , 2010 .

[56]  L. Biegler,et al.  Superstructure-based optimal synthesis of pressure swing adsorption cycles for precombustion CO2 capture , 2010 .

[57]  L. Biegler,et al.  Advances in simultaneous strategies for dynamic process optimization , 2002 .

[58]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[59]  James B. Rawlings,et al.  Optimizing Process Economic Performance Using Model Predictive Control , 2009 .

[60]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[61]  James B. Rawlings,et al.  Model Predictive Control , 2012 .

[62]  Lorenz T. Biegler,et al.  Stability of Economically-Oriented NMPC with Periodic Constraint , 2011 .

[63]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[64]  Frank Allgöwer,et al.  Robust model predictive control for nonlinear discrete‐time systems , 2003 .

[65]  Lawrence Megan,et al.  Compartmental modeling of high purity air separation columns , 2005, Comput. Chem. Eng..

[66]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[67]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[68]  Lorenz T. Biegler,et al.  Offset-Free Nonlinear Model Predictive Control Based on Moving Horizon Estimation for an Air Separation Unit , 2010 .

[69]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[70]  C. R. Cutler,et al.  Real time optimization with multivariable control is required to maximize profits , 1983 .

[71]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[72]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[73]  Lorenz T. Biegler,et al.  MPEC strategies for cost optimization of pipeline operations , 2010, Comput. Chem. Eng..

[74]  Victor M. Zavala,et al.  Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control , 2009, Comput. Chem. Eng..

[75]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[76]  Riccardo Scattolini,et al.  On the stabilization of nonlinear discrete-time systems with output feedback , 2004 .

[77]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[78]  A. Astolfi,et al.  Simple Robust Control Invariant Tubes for Some Classes of Nonlinear Discrete Time Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[79]  Manfred Morari,et al.  Contractive model predictive control for constrained nonlinear systems , 2000, IEEE Trans. Autom. Control..

[80]  Anthony V. Fiacco,et al.  Introduction to Sensitivity and Stability Analysis in Nonlinear Programming , 2012 .

[81]  D. Mayne,et al.  Robust receding horizon control of constrained nonlinear systems , 1993, IEEE Trans. Autom. Control..

[82]  H. ChenT,et al.  A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability * , 1998 .

[83]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[84]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[85]  Brian Roffel,et al.  First principles dynamic modeling and multivariable control of a cryogenic distillation process , 2000 .

[86]  Martin Guay,et al.  A new real-time perspective on non-linear model predictive control , 2006 .

[87]  Sebastian Engell,et al.  FEEDBACK CONTROL FOR OPTIMAL PROCESS OPERATION , 2007 .

[88]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[89]  Sebastian Engell,et al.  Non-linear model predictive control of the hashimoto simulated moving bed process , 2007 .

[90]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[91]  T. Alamo,et al.  Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets , 2006, Autom..

[92]  D. Limón,et al.  Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[93]  Andrew R. Teel,et al.  Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control , 2005, Autom..

[94]  Sigurd Skogestad,et al.  Coordinator MPC for maximizing plant throughput , 2008, Comput. Chem. Eng..

[95]  Victor M. Zavala,et al.  Advanced step nonlinear model predictive control for air separation units , 2009 .

[96]  Kenneth R. Muske,et al.  Disturbance modeling for offset-free linear model predictive control , 2002 .

[97]  David Angeli,et al.  Receding Horizon Cost Optimization and Control for Nonlinear Plants , 2010 .

[98]  Lorenz T. Biegler,et al.  Robust extended Kalman filter based nonlinear model predictive control formulation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[99]  K. Kobe The properties of gases and liquids , 1959 .

[100]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[101]  M. Graells,et al.  Real-Time Evolution for On-line Optimization of Continuous Processes , 2002 .

[102]  Eric C. Kerrigan,et al.  Offset‐free receding horizon control of constrained linear systems , 2005 .

[103]  M. Ierapetritou,et al.  Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches , 2002 .