Metal-controlled assembly of uranyl diphosphonates toward the design of functional uranyl nanotubules.

Two uranyl nanotubules with elliptical cross sections were synthesized in high yield from complex and large oxoanions using hydrothermal reactions of uranyl salts with 1,4-benzenebisphosphonic acid or 4,4'-biphenylenbisphosphonic acid and Cs(+) or Rb(+) cations in the presence of hydrofluoric acid. Disordered Cs(+)/Rb(+) cations and solvent molecules are present within and/or between the nanotubules. Ion-exchange experiments with A(2){(UO(2))(2)F(PO(3)HC(6)H(4)C(6)H(4)PO(3)H)(PO(3)HC(6)H(4)C(6)H(4)PO(3))}·2H(2)O (A = Cs(+), Rb(+)), revealed that A(+) cations can be exchanged for Ag(+) ions. The uranyl phenyldiphosphonate nanotubules, Cs(3.62)H(0.38)[(UO(2))(4){C(6)H(4)(PO(2)OH)(2)}(3){C(6)H(4)(PO(3))(2)}F(2)]·nH(2)O, show high stability and exceptional ion-exchange properties toward monovalent cations, as demonstrated by ion-exchange studies with selected cations, Na(+), K(+), Tl(+), and Ag(+). Studies on ion-exchanged single crystal using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDS) provide evidence for chemical zonation in Cs(3.62)H(0.38)[(UO(2))(4){C(6)H(4)(PO(2)OH)(2)}(3){C(6)H(4)(PO(3))(2)}F(2)]·nH(2)O, as might be expected for exchange through a diffusion mechanism.

[1]  T. Albrecht‐Schmitt,et al.  Heterobimetallic Copper(II) Uranyl Carboxyphenylphosphonates , 2011 .

[2]  T. Albrecht‐Schmitt,et al.  Pillared and open-framework uranyl diphosphonates , 2011 .

[3]  T. Albrecht‐Schmitt,et al.  Syntheses of Uranyl Diphosphonate Compounds Using Encapsulated Cations as Structure Directing Agents , 2011 .

[4]  A. Oliver,et al.  Layered and Three-Dimensional Framework Cesium and Barium Uranyl Carboxyphenylphosphonates , 2011 .

[5]  A. Oliver,et al.  Hydrothermal Synthesis and Structural Characterization of Organically Templated Uranyl Diphosphonate Compounds , 2011 .

[6]  A. Clearfield,et al.  In situ X-ray diffraction study of cesium exchange in synthetic umbite. , 2011, Inorganic chemistry.

[7]  T. Loiseau,et al.  Revisiting the Uranyl-phthalate System: Isolation and Crystal Structures of Two Types of Uranyl−Organic Frameworks (UOF) , 2011 .

[8]  P. Burns,et al.  Low-symmetry uranyl pyrophosphate cage clusters. , 2011, Chemistry.

[9]  T. Albrecht‐Schmitt,et al.  Differential ion exchange in elliptical uranyl diphosphonate nanotubules. , 2010, Angewandte Chemie.

[10]  P. Burns,et al.  Hybrid uranium-oxalate fullerene topology cage clusters. , 2010, Angewandte Chemie.

[11]  P. Burns,et al.  Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. , 2010, Journal of the American Chemical Society.

[12]  T. Albrecht‐Schmitt,et al.  Comparison of thorium(IV) and uranium(VI) carboxyphosphonates. , 2010, Inorganic chemistry.

[13]  P. Burns,et al.  Uranyl peroxide closed clusters containing topological squares. , 2010, Dalton transactions.

[14]  T. Bein,et al.  Exceptional ion-exchange selectivity in a flexible open framework lanthanum(III)tetrakisphosphonate. , 2009, Journal of the American Chemical Society.

[15]  P. Burns,et al.  Uranyl-peroxide interactions favor nanocluster self-assembly. , 2009, Journal of the American Chemical Society.

[16]  P. Burns,et al.  Crown and bowl-shaped clusters of uranyl polyhedra. , 2009, Inorganic chemistry.

[17]  C. Cahill,et al.  Homometallic uranium(VI) phosphonoacetates containing interlayer dipyridines. , 2009, Inorganic chemistry.

[18]  P. Heaney,et al.  Cs-exchange in birnessite: Reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy , 2009 .

[19]  P. Burns,et al.  Expanding the crystal chemistry of actinyl peroxides: mu-eta2:eta1 peroxide coordination in trimers of U6+ polyhedra. , 2009, Inorganic chemistry.

[20]  T. Albrecht‐Schmitt,et al.  Uranyl diphosphonates with pillared structures. , 2009, Inorganic chemistry.

[21]  C. Cahill,et al.  Structural variation within homometallic uranium(VI) carboxyphosphonates: in situ ligand synthesis, directed assembly, metal-ligand coordination and hydrogen bonding. , 2008, Inorganic chemistry.

[22]  P. Thuéry Two uranyl-organic frameworks with formic acid. A novel example of a uranyl-based nanotubular assemblage , 2008 .

[23]  S. Krivovichev,et al.  A crown ether as template for microporous and nanostructured uranium compounds. , 2008, Angewandte Chemie.

[24]  C. Cahill,et al.  Homo- and heterometallic coordination polymers from the f elements , 2007 .

[25]  J. Mao Structures and luminescent properties of lanthanide phosphonates , 2007 .

[26]  A. Clearfield Metal Phosphonate Chemistry , 2007 .

[27]  F. Abraham,et al.  Three-dimensional framework of uranium-centered polyhedra with non-intersecting channels in the uranyl oxy-vanadates A2(UO2)3(VO4)2O (A=Li, Na) , 2007 .

[28]  A. Clearfield,et al.  Structural and Mechanistic Investigation of Rubidium Ion Exchange in Potassium Zirconium Trisilicate. , 2007 .

[29]  P. Halasyamani,et al.  New layered uranium phosphate fluorides: syntheses, structures, characterizations, and ion-exchange properties of A(UO2)F(HPO4).xH2O (A = Cs+, Rb+, K+; x = 0-1). , 2006, Inorganic chemistry.

[30]  C. Cahill,et al.  Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. , 2006, Dalton transactions.

[31]  Peter C. Burns,et al.  U6+ MINERALS AND INORGANIC COMPOUNDS: INSIGHTS INTO AN EXPANDED STRUCTURAL HIERARCHY OF CRYSTAL STRUCTURES , 2005 .

[32]  T. Albrecht‐Schmitt Actinide materials adopt curvature: nanotubules and nanospheres. , 2005, Angewandte Chemie.

[33]  P. Burns,et al.  Actinyl peroxide nanospheres. , 2005, Angewandte Chemie.

[34]  S. Krivovichev,et al.  Nanoscale tubules in uranyl selenates. , 2005, Angewandte Chemie.

[35]  T. Albrecht‐Schmitt,et al.  Crystal chemistry and ion-exchange properties of the layered uranyl iodate K[UO2(IO3)3] , 2005 .

[36]  T. Albrecht‐Schmitt,et al.  Syntheses, structures, and ion-exchange properties of the three-dimensional framework uranyl gallium phosphates, Cs4[(UO2)2(GaOH)2(PO4)4].H2O and Cs[UO2Ga(PO4)2]. , 2005, Inorganic chemistry.

[37]  S. Krivovichev,et al.  Highly porous uranyl selenate nanotubules. , 2005, Journal of the American Chemical Society.

[38]  M. Saadi,et al.  Synthesis, crystal structure and electrical characterization of Cs4[(UO2)2(V2O7)O2], a uranyl divanadate with chains of corner-sharing uranyl square bipyramids , 2004 .

[39]  A. Navrotsky,et al.  Stability of Peroxide-Containing Uranyl Minerals , 2003, Science.

[40]  D. O′Hare,et al.  Reactant-Mediated Diversity in Uranyl Phosphonates , 2003 .

[41]  T. Albrecht‐Schmitt,et al.  Self-assembly of a polar open-framework uranyl vanadyl hexaoxoiodate(VII) constructed entirely from distorted octahedral building units in the first uranium hexaoxoiodate: K2[(UO2)2(VO)2(IO6)2O].H2O. , 2003, Inorganic chemistry.

[42]  S. Krivovichev,et al.  Crystal Chemistry of Rubidium Uranyl Molybdates: Crystal Structures of Rb6[(UO2)(MoO4)4], Rb6[(UO2)2O(MoO4)4], Rb2[(UO2)(MoO4)2], Rb2[(UO2)2(MoO4)3] and Rb2[(UO2)6(MoO4)7(H2O)2] , 2002 .

[43]  S. Krivovichev,et al.  CRYSTAL CHEMISTRY OF URANYL MOLYBDATES. III. NEW STRUCTURAL THEMES IN Na6[(UO2)2O(MoO4)4], Na6[(UO2)(MoO4)4] AND K6[(UO2)2O(MoO4)4] , 2001 .

[44]  T. Albrecht‐Schmitt,et al.  Hydrothermal Syntheses, Structures, and Fluorescence Spectroscopy of New One-Dimensional Uranium Oxyfluorides Built from Edge-Sharing [UO2F5] Pentagonal Bipyramids , 2000 .

[45]  A. Wilkins,et al.  Uranyl nitrate complexes of camphene-derived organophosphorus ligands, and the X-ray crystal structure of [UO2(NO3)2(RPO3Me2)2] (R=endo-8-camphanyl) , 1998 .

[46]  A. Clearfield,et al.  Polymorphism and Phase Transition in Nanotubular Uranyl Phenylphosphonate: (UO2)3(HO3PC6H5)2(O3PC6H5)2·H2O , 1998 .

[47]  R. Ewing,et al.  The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra , 1997 .

[48]  A. Clearfield,et al.  Alkali-Ion-Catalyzed Transformation of Two Linear Uranyl Phosphonates into a Tubular One , 1997 .

[49]  D. Grohol,et al.  Intercalative Ion Exchange of Polyamine Transition Metal Complexes into Hydrogen Uranyl Phosphate. , 1997, Inorganic chemistry.

[50]  A. Clearfield,et al.  Solid-State Water-Catalyzed Transformation at Room Temperature of a Nonluminescent Linear-Chain Uranyl Phenylphosphonate into a Luminescent One , 1997 .

[51]  K. Nash F-Element complexation by diphosphonate ligands , 1997 .

[52]  A. Clearfield,et al.  Synthesis, crystal structures, and proton conductivity of two linear-chain uranyl phenylphosphonates , 1996 .

[53]  Peter C. Burns,et al.  U (super 6+) minerals and inorganic phases; a comparison and hierarchy of crystal structures , 1996 .

[54]  A. Clearfield Recent advances in metal phosphonate chemistry II , 1996 .

[55]  A. Clearfield,et al.  Structure Determination of a Complex Tubular Uranyl Phenylphosphonate, (UO2)3(HO3PC6H5)2(O3PC6H5)2‚H2O, from Conventional X-ray Powder Diffraction Data , 1996 .

[56]  A. Clearfield,et al.  Synthesis and X-Ray Powder Structure of a Novel Porous Uranyl Phenylphosphonate Containing Unidimensional Channels Flanked by Hydrophobic Regions† , 1995 .

[57]  S. Bruque,et al.  A comparative study of the electrical behaviour of different uranyl phosphate-based membranes by a.c. and d.c. measurements* , 1995 .

[58]  K. Nash Actinide phosphonate complexes in aqueous solutions , 1994 .

[59]  Thomas E. Mallouk,et al.  LAYERED METAL PHOSPHATES AND PHOSPHONATES : FROM CRYSTALS TO MONOLAYERS , 1992 .

[60]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[61]  R. Paine,et al.  Structural studies of uranyl complexes of diphenyl-dimethylaminosulfonylmethyl phosphine oxide and diisopropyl-tolylsulfinylmethyl phosphonate ligands , 1990 .

[62]  R. Vochten Transformation of chernikovite and sodium autunite into lehnerite , 1990 .

[63]  P. Dorhout,et al.  Two families of lamellar, luminescent solid solutions: The intercalative conversion of hydrogen uranyl phosphate arsenates to uranyl phosphate arsenates , 1989 .

[64]  A. Howe,et al.  Studies of layered uranium (VI) compounds. VI. Ionic conductivities and thermal stabilities of MUO2PO4 · nH2O, where M = H, Li,Na,K,NH4 or 12 Ca, and where n is between 0 and 4 , 1981 .

[65]  N. Edelstein Lanthanide and Actinide Chemistry and Spectroscopy , 1980 .

[66]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[67]  P. Burns,et al.  The structure of the plutonium oxide nanocluster [Pu38O56Cl54(H2O)8]14-. , 2008, Angewandte Chemie.

[68]  S. Skanthakumar,et al.  Cs+-selective ion exchange and magnetic ordering in a three-dimensional framework uranyl vanadium(IV) phosphate , 2007 .

[69]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[70]  R. Rogers,et al.  Thermodynamics and hydration of the europium complexes of a nitrogen heterocycle methane-1,1-diphosphonic acid , 2000 .

[71]  Robert J. Finch,et al.  Uranium : mineralogy, geochemistry and the environment , 1999 .

[72]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[73]  C. Ferragina,et al.  Coordination of Co2+, Ni2+ and Cu2+ to 2,9 - dimethyl - 1,10 phenanthroline intercalated in α-zirconium phosphate: Evidence for dimers , 1987 .

[74]  L. Moreno-Real,et al.  Ion exchange reactions of n-butylamine intercalates of tin(IV) hydrogen phosphate and hydrogen uranyl phosphate with cobalt(III) complexes , 1986 .

[75]  M. Dines,et al.  Synthesis and characterization of layered tetravalent metal terphenyl mono- and bis-phosphonates , 1983 .