Printable Highly Stable and Superfast Humidity Sensor Based on Two Dimensional Molybdenum Diselenide

[1]  D. Late,et al.  Hydrothermal growth of MoSe2 nanoflowers for photo- and humidity sensor applications , 2019, Sensors and Actuators A: Physical.

[2]  Xiaolei Cui,et al.  Lead‐Free Cs2BiAgBr6 Double Perovskite‐Based Humidity Sensor with Superfast Recovery Time , 2019, Advanced Functional Materials.

[3]  Jinho Bae,et al.  Bio-compatible organic humidity sensor based on natural inner egg shell membrane with multilayer crosslinked fiber structure , 2019, Scientific Reports.

[4]  Min Xu,et al.  Super-fast response humidity sensor based on La0.7Sr0.3MnO3 nanocrystals prepared by PVP-assisted sol-gel method , 2018 .

[5]  B. Derby,et al.  Fully printed high performance humidity sensors based on two-dimensional materials. , 2018, Nanoscale.

[6]  Arshad Hassan,et al.  Wide range and stable ink-jet printed humidity sensor based on graphene and zinc oxide nanocomposite , 2018, Journal of Materials Science: Materials in Electronics.

[7]  Yajun Jiang,et al.  MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery , 2017 .

[8]  A. Eftekhari Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics , 2017 .

[9]  S. Mukhopadhyay,et al.  Sensitivity Enhancement of a PPM Level Capacitive Moisture Sensor , 2017 .

[10]  P. K. Guha,et al.  Liquid exfoliated pristine WS2 nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors , 2016, Nanotechnology.

[11]  K. Choi,et al.  Bio-compatible organic humidity sensor transferred to arbitrary surfaces fabricated using single-cell-thick onion membrane as both the substrate and sensing layer , 2016, Scientific Reports.

[12]  Tong Zhang,et al.  Stable cross-linked amphiphilic polymers from a one-pot reaction for application in humidity sensors , 2016 .

[13]  A. Castellanos-Gómez,et al.  Why all the fuss about 2D semiconductors? , 2016, Nature Photonics.

[14]  K. Chou,et al.  Effect of Microstructure of ZnO Nanorod Film on Humidity Sensing , 2016 .

[15]  B. Jonker,et al.  Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2 , 2016, Scientific Reports.

[16]  S. Jadkar,et al.  Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications. , 2016, ACS applied materials & interfaces.

[17]  E. Bakhoum,et al.  High-Accuracy Miniature Dew Point Sensor and Instrument , 2015, IEEE Sensors Journal.

[18]  Byoung Hun Lee,et al.  Charge-transfer-based Gas Sensing Using Atomic-layer MoS2 , 2015, Scientific Reports.

[19]  Ya‐Xia Yin,et al.  Elemental Selenium for Electrochemical Energy Storage. , 2015, The journal of physical chemistry letters.

[20]  Thomas Doneux,et al.  Single-layer MoSe2 based NH3 gas sensor , 2014 .

[21]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[22]  J. Huh,et al.  Efficient exfoliation of MoS2 with volatile solvents and their application for humidity sensor. . , 2014, Journal of nanoscience and nanotechnology.

[23]  U. Waghmare,et al.  Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction , 2014 .

[24]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[25]  U. Waghmare,et al.  Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  X. Duan,et al.  Chemical vapor deposition growth of monolayer MoSe2 nanosheets , 2014, Nano Research.

[27]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[28]  Saroj K. Nayak,et al.  Superior Field Emission Properties of Layered WS2-RGO Nanocomposites , 2013, Scientific Reports.

[29]  Mahmoud Almasri,et al.  A micromachined impedance biosensor for accurate and rapid detection of E. coli O157:H7 , 2013 .

[30]  Jani Kivioja,et al.  Ultrafast graphene oxide humidity sensors. , 2013, ACS nano.

[31]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[32]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[33]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[34]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[35]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[36]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[37]  S. Larentis,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012, 1211.3096.

[38]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[39]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[40]  M. Otyepka,et al.  Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. , 2012, Chemical reviews.

[41]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[42]  Zhe-sheng Feng,et al.  A novel humidity sensor based on alumina nanowire films , 2012 .

[43]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[44]  D. Late,et al.  Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates , 2012 .

[45]  Jun Dai,et al.  Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface , 2012, Advanced materials.

[46]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[47]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[48]  D. Mant,et al.  Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies , 2011, The Lancet.

[49]  A. Thrift,et al.  Systematic Review of Observational Studies , 2010, Neuroepidemiology.

[50]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[51]  T. Polcar,et al.  Temperature dependence of tribological properties of MoS2 and MoSe2 coatings , 2005 .

[52]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[53]  G. Casalbore-Miceli,et al.  Polymer electrolytes as humidity sensors: progress in improving an impedance device , 2002 .

[54]  G. L. Sharma,et al.  Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal- electrochemical method , 2002 .

[55]  E. Zdankiewicz,et al.  Micromachined water vapor sensors: a review of sensing technologies , 2001 .

[56]  S. Nishiwaki,et al.  Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure , 2001 .

[57]  R. Mertens,et al.  Nanoscaled interdigitated electrode arrays for biochemical sensors , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[58]  P. B. James,et al.  The crystal structure of MoSe2 , 1963 .

[59]  R. Wang,et al.  Humidity sensing properties of Bi0.5(Na0.85K0.15)0.5Ti0.97Zr0.03O3 microspheres: Effect of A and B sites co-substitution , 2014 .

[60]  Noboru Yamazoe,et al.  Ceramic humidity sensors , 1983 .