Materials and processes for the effective capture and immobilization of radioiodine: A review

Abstract The immobilization of radioiodine produced from reprocessing used nuclear fuel is a growing priority for research and development of nuclear waste forms. This review provides a comprehensive summary of the current issues surrounding processing and containment of 129I, the isotope of greatest concern due to its long half-life of 1.6 × 107 y and potential incorporation into the human body. Strategies for disposal of radioiodine, captured by both wet scrubbing and solid sorbents, are discussed, as well as potential iodine waste streams for insertion into an immobilization process. Next, consideration of direct disposal of salts, incorporation into glasses, ceramics, cements, and other phases is discussed. The bulk of the review is devoted to an assessment of various sorbents for iodine and of waste forms described in the literature, particularly inorganic minerals, ceramics, and glasses. This review also contains recommendations for future research needed to address radioiodine immobilization materials and processes.

[1]  J. Crum,et al.  Iodine solubility in a low-activity waste borosilicate glass at 1000 °C , 2014 .

[2]  Atsuko Kosuga,et al.  Thermal and mechanical properties of AgPb9(VO4)6I and AgBa9(VO4)6I , 2004 .

[3]  F. P. Glasser,et al.  Fundamental aspects of cement solidification and stabilisation , 1997 .

[4]  M. Flury,et al.  Alteration of Kaolinite to Cancrinite and Sodalite by Simulated Hanford Tank Waste and its Impact on Cesium Retention , 2004 .

[5]  William C. Lepry,et al.  Initial Assessment of the Consolidation of Chalcogels into a Viable Waste Form , 2012 .

[6]  T. Sakurai,et al.  Behavior of Iodine-131 in Dissolution of Irradiated Uranium Dioxide , 1987 .

[7]  M. I. Ojovan,et al.  Cementitious Materials for Nuclear Waste Immobilization , 2014 .

[8]  E. Vance,et al.  Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel , 2012 .

[9]  I. A. Rumer,et al.  Synthesis of sorbents based on coarsely dispersed silica gel, containing nanoparticles of Ag compounds, for localization of volatile radioactive iodine compounds from the water vapor-air medium , 2012, Radiochemistry.

[10]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[11]  R. D. Scheele,et al.  Selection of a form for fixation of iodine-129 , 1981 .

[12]  M. Kikuchi,et al.  Removal of radioactive methyl iodide by silver impregnated alumina and zeolite , 1978 .

[13]  D. Matson,et al.  Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine , 2011 .

[14]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[15]  R. D. Scheele,et al.  Status of radioiodine control for nuclear fuel reprocessing plants , 1983 .

[16]  O. Kato,et al.  Aqueous Dissolution of Silver Iodide and Associated Iodine Release under Reducing Conditions with FeCl2 Solution , 2008 .

[17]  John S. McCloy,et al.  Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides , 2012 .

[18]  E. Alexander,et al.  Iodine-129 in Terrestrial Ores , 1971, Science.

[19]  J. Chun,et al.  Summary Report for the Development of Materials for Volatile Radionuclides , 2010 .

[20]  M. Kanatzidis,et al.  Selective Surfaces: High-Surface-Area Zinc Tin Sulfide Chalcogels , 2011 .

[21]  J. Mackenzie,et al.  Chalcohalide glasses: I. Synthesis and properties of GeSBr and GeSI glasses , 1989 .

[22]  Dorina F. Sava,et al.  Thermochemical evidence for strong iodine chemisorption by ZIF-8. , 2013, Journal of the American Chemical Society.

[23]  R. D. Scheele,et al.  Recycle of iodine-loaded silver mordenite by hydrogen reduction , 1982 .

[24]  J. Crum,et al.  Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment , 2014 .

[25]  Jesse R. Conner,et al.  A Critical Review of Stabilization/Solidification Technology , 1998 .

[26]  I. Chang Synthesis of Photochromic and Cathodochromic Sodalite , 1974 .

[27]  A. Sanson,et al.  Influence of temperature on the local structure around iodine in fast-ion-conducting AgI:Ag2MoO4 glasses , 2007 .

[28]  M. Ingram,et al.  The origins of neutron-scattering prepeaks and conductivity enhancement in AgI-containing glasses , 1995 .

[29]  T. Ikoma,et al.  Formation of Hydroxyapatite Nanocrystals on the Surface of Ca–Al‐Layered Double Hydroxide , 2010 .

[30]  T. Garn,et al.  Closed Fuel Cycle Waste Treatment Strategy , 2015 .

[31]  M. Kanatzidis,et al.  Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of surface polarizability on selectivity in gas separation. , 2010, Journal of the American Chemical Society.

[32]  T. Sakurai,et al.  Catalytic Effect of Silver-Impregnated Silica-Gel (AgS) on Reaction of Methyl Iodide with Nitrogen Dioxide , 1994 .

[33]  Randall D. Scheele,et al.  HWVP Iodine Trap Evaluation , 2004 .

[34]  T. Advocat,et al.  New conditionings for separated long-lived radionuclides , 2002 .

[35]  R. Jubin Organic iodine removal from simulated dissolver off-gas streams using silver-exchanged mordenite , 1980 .

[36]  M. Kanatzidis,et al.  Consolidation of Tin Sulfide Chalcogels and Xerogels with and without Adsorbed Iodine , 2015 .

[37]  T. Nenoff,et al.  Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. , 2010, Journal of the American Chemical Society.

[38]  R. Jubin,et al.  Assessments and Options for Removal and Immobilization of Volatile Radionuclides from the Processing of Used Nuclear Fuel , 2015 .

[39]  D. W. Holladay Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents , 1979 .

[40]  A. Tomasi,et al.  Structural study of AgI-Ag2O-B2O3 glasses by X-ray absorption spectroscopy , 1992 .

[41]  A. Grandjean,et al.  Immobilization of iodine into a hydroxyapatite structure prepared by cementation , 2014 .

[42]  W. Morton,et al.  Juvenile hypothyroidism among two populations exposed to radioiodine. , 1999, Environmental health perspectives.

[43]  P. Norby,et al.  Hydrothermal preparation of zeolite Li−A(BW), LiAlSiO4•H2O, and structure determination from powder diffraction data by direct methods , 1986 .

[44]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[45]  J. Szecsody,et al.  Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions , 2004 .

[46]  D. Siemer Improving the Integral Fast Reactor's Proposed Salt Waste Management System , 2012 .

[47]  T. Garn,et al.  Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities , 2013 .

[48]  L. L. Burger,et al.  Determining criteria for the disposal of iodine-129 , 1980 .

[49]  Arun S. Wagh,et al.  Magnesium potassium phosphate ceramic for 99Tc immobilization , 2006 .

[50]  M. Iliev,et al.  Raman spectroscopy of M3B7O13X boracites (M = Cr,Co,Ni,Cu,Zn,Cd; X = Cl,Br,I) , 2014 .

[51]  Hiroshi Fujihara,et al.  Manufacturing of Rock Solidified Waste by HIP , 2004 .

[52]  Y. Grin,et al.  Spark plasma sintering of lead phosphovanadate Pb3(VO4)1.6(PO4)0.4 , 2009 .

[53]  F. Herrmann,et al.  Removal of iodooraganic compounds from kerosene in nuclear fuel reprocessing , 1993 .

[54]  T. Sakurai,et al.  The Behavior of Iodine in a Simulated Spent-Fuel Solution , 1989 .

[55]  Stephen Priebe,et al.  The Ceramic Waste Form Process at Idaho National Laboratory , 2006 .

[56]  M. Stone,et al.  Residual mercury content and leaching of mercury and silver from used amalgam capsules. , 2002, Dental materials : official publication of the Academy of Dental Materials.

[57]  Thomas B. Cochran,et al.  Behind the Nuclear Curtain: Radioactive Waste Management in the Former Soviet Union , 1997 .

[58]  Kai Xu,et al.  Iron phosphate glass for immobilization of 99Tc , 2013 .

[59]  R. D. Scheele,et al.  Comparison of silver sorbents for application to radioiodine control at the PUREX process facility modification. [Iodine 129] , 1988 .

[60]  Y. Vlasov,et al.  Degenerated mixed cation effect in CuI–AgI–As2Se3 glasses: 64Cu and 110Ag tracer diffusion studies , 1998 .

[61]  R. Odoj,et al.  Investigations on the Partitioning of 129I from Silver-Impregnated Silica in Preparation for Future Transmutation , 1997 .

[62]  James J. Neeway,et al.  Technetium and Iodine Getters to Improve Cast Stone Performance , 2015 .

[63]  N. Hyatt,et al.  Rapid synthesis of Pb5(VO4)3I, for the immobilisation of iodine radioisotopes, by microwave dielectric heating , 2011 .

[64]  G. Vandegrift,et al.  Compatibility of Technologies with Regulations in the Waste Management of H-3, I-129, C-14, and Kr-85: Part 1, Initial Information Base , 1983 .

[65]  A. Benyagoub,et al.  Ion implantation of iodine into silicon carbide: Influence of temperature on the produced damage and on the diffusion behaviour , 2008 .

[66]  J. Buhl The properties of salt-filled sodalites. Part 4. Synthesis and heterogeneous reactions of iodate-enclathrated sodalite Na8[AlSiO4]6(IO3)2−x(OH·H2O)x; 0.7 < x < 1.3 , 1996 .

[67]  R. Ewing,et al.  Bulk Iodoapatite Ceramic Densified by Spark Plasma Sintering with Exceptional Thermal Stability , 2014 .

[68]  T. Sakurai,et al.  Influence of NOx and HNO2 on iodine quantity in spent-fuel solutions , 1996 .

[69]  P. Hrma Retention of Halogens in Waste Glass , 2010 .

[70]  A. N. Kamenskaya,et al.  Chemistry of radioactive iodine in aqueous media: Basic and applied aspects , 2011 .

[71]  F. Bart Cement-Based Materials for Nuclear Waste Storage , 2014 .

[72]  G. Stucky,et al.  Silver, sodium halosodalites: class A sodalites , 1992 .

[73]  Alberius Henning P,et al.  Iodo-oxyapatite, the first example from a new class of modulated apatites. , 1999, Acta crystallographica. Section B, Structural science.

[74]  Robert Thomas Jubin,et al.  Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment , 2013 .

[75]  W. E. Ebert,et al.  Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory. , 2006 .

[76]  R. Jubin The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite , 1994 .

[77]  S. Sivasanker,et al.  New Hydrotalcite-like Anionic Clays Containing Zr4+ in the Layers: Synthesis and Physicochemical Properties , 1998 .

[78]  H. Eugster,et al.  SYNTHESIS OF THE SODALITE GROUP AND SUBSOLIDUS EQUILIBRIA IN THE SODALITE-NOSELITE SYSTEM , 1968 .

[79]  M. Kanatzidis,et al.  Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture. , 2014, Environmental science & technology.

[80]  M. Kanatzidis,et al.  Chalcogenide Aerogels as Sorbents for Radioactive Iodine , 2015 .

[81]  C. Tomasi,et al.  XANES and EXAFS at Mo K-edge in (AgI)1−x(Ag2MoO4)x glasses and crystals , 1999 .

[82]  T. Sakurai,et al.  Trapping and Measuring Radioiodine (Iodine-129) in Cartridge Filters , 1997 .

[83]  D. Bibby,et al.  Synthesis of silica-sodalite from non-aqueous systems , 1985, Nature.

[84]  Yun Bao,et al.  Binders for radioactive waste forms made from pretreated calcined sodium bearing waste , 2004 .

[85]  Wei Chen,et al.  Novel chalcohalide glasses in the As-Ge-Ag-Se-Te-I system , 1995 .

[86]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[87]  Mark A. Rodriguez,et al.  Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8. , 2011, Journal of the American Chemical Society.

[88]  Jean-Marc Montel,et al.  Iconography : Minerals and design of new waste forms for conditioning nuclear waste , 2011 .

[89]  A. Grandjean,et al.  Investigation of the local environment of iodate in hydroxyapatite by combination of X-ray absorption spectroscopy and DFT modeling , 2014 .

[90]  H. Owada,et al.  Development of New Waste Forms to Immobilize Iodine-129 Released from a Spent Fuel Reprocessing Plant , 2010 .

[91]  P. Petkov,et al.  Novel chalcohalide glasses from the Ge–S–AgI system and some physicochemical features , 2007 .

[92]  A. Seddon,et al.  Thermal properties of chalcogenide-halide glasses in the system: Ge-S-I , 1991 .

[93]  A. Grandjean,et al.  Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine , 2011 .

[94]  T. Woignier,et al.  Permeability measurement in composite aerogels: application to nuclear waste storage , 2001 .

[95]  G. Barney Fixation of radioactive waste by hydrothermal reactions with clays , 1974 .

[96]  James L. Krumhansl,et al.  Hydrotalcite-like layered bismuth–iodine–oxides as waste forms , 2010 .

[97]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[98]  R. D. Scheele,et al.  Methyl iodide sorption by reduced silver mordenite , 1983 .

[99]  F. Audubert,et al.  Elaboration of an iodine-bearing apatite Iodine diffusion into a Pb3(VO4)2 matrix , 1997 .

[100]  Jang-Jin Park,et al.  Waste Form of Silver Iodide (AgI) with Low-Temperature Sintering Glasses , 2014 .

[101]  A. Sanson,et al.  Thermal behaviour of the local environment around iodine in fast-ion-conducting AgI-doped glasses , 2007 .

[102]  T. Minami,et al.  Formation region and characterization of superionic conducting glasses in the systems AgIAg2OMxOy , 1980 .

[103]  T. Woignier,et al.  Nuclear Waste Storage in Gel-Derived Materials , 2000 .

[104]  L. Long,et al.  Rigid pillars and double walls in a porous metal-organic framework: single-crystal to single-crystal, controlled uptake and release of iodine and electrical conductivity. , 2010, Journal of the American Chemical Society.

[105]  Michael G. Jones,et al.  Summary of FY 2010 Iodine Capture Studies at the INL , 2010 .

[106]  R. H. Nussbaum,et al.  Cancers among Residents Downwind of the Hanford, Washington, Plutonium Production Site , 2003, Archives of environmental health.

[107]  R. Scheele,et al.  Solidification and stabilization of silver mordenite used to control radioiodine emissions from Hanford’s Waste Treatment Plant , 2015 .

[108]  F. P. Glasser,et al.  Progress in the immobilization of radioactive wastes in cement , 1992 .

[109]  K. Takeshita,et al.  Development of Thermal Swing Adsorption (TSA) Process for Complete Recovery of Iodine in Dissolver Off-gas , 2004 .

[110]  N. Kalinin,et al.  Treatment of gas-air flows to remove radioiodine using metallic copper , 2009 .

[111]  M. Kikuchi,et al.  Silver-impregnated alumina for removal of radioactive methyl iodide , 1995 .

[112]  F. C. Lin,et al.  Chemical Durability of Arsenic‐Sulfur‐Iodine Glasses , 1963 .

[113]  C. Tomasi,et al.  Fractal nanochannels as the basis of the ionic transport in AgI-based glasses. , 2005, The journal of physical chemistry. B.

[114]  E. Maddrell,et al.  Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: An infrared and Raman spectroscopic study , 2007 .

[115]  A. Seddon,et al.  Thermal characterisation of infrared-transmitting GeSI glasses , 1993 .

[116]  Jesse R. Conner,et al.  Chemical fixation and solidification of hazardous wastes , 1990 .

[117]  L. Taylor,et al.  STANDARDS FOR PROTECTION AGAINST RADIATION. , 1970 .

[118]  G. D. Thomas,et al.  Using Public Relations Strategies to Prompt Populations at Risk to Seek Health Information: The Hanford Community Health Project , 2009, Health promotion practice.

[119]  T. Sakurai,et al.  Reactions of CH3I and C2H5I with NO2 on Zeolite 13X. , 1984 .

[120]  Dorina F. Sava,et al.  Iodine Confinement into Metal–Organic Frameworks (MOFs): Low-Temperature Sintering Glasses To Form Novel Glass Composite Material (GCM) Alternative Waste Forms , 2012 .

[121]  R. H. Nussbaum,et al.  Thyrotoxicosis among Hanford, Washington, Downwinders: A Community-Based Health Survey , 2002, Archives of environmental health.

[122]  D. Machewirth,et al.  Pr3+-doped Ge–S–I glasses as candidate materials for 1.3 μm optical fiber amplifiers , 1997 .

[123]  I. W. Donald,et al.  A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal , 2007 .

[124]  M. Flury,et al.  Colloid formation in Hanford sediments reacted with simulated tank waste. , 2004, Environmental science & technology.

[125]  M. Tsuji SeO32−-selective properties of inorganic materials synthesized by the soft chemical process , 2002 .

[126]  G. Armatas,et al.  Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters , 2007, Science.

[127]  Á. Mondino,et al.  Separation of iodine produced from fission using silver-coated alumina , 2003 .

[128]  P. Wesolowski,et al.  Electrical properties of superionic silver‐borate glasses doped with AgI , 1989 .

[129]  X. Wang,et al.  New facile method for the preparation of M3B7O13I boracites (M = Mn, Fe, Co, Ni, Cd). , 2013, Inorganic chemistry.

[130]  L. Sharygin,et al.  High-temperature purification of gases with an inorganic titanium-dioxide-based sorbent to remove molecular iodine and methyl iodide , 1992 .

[131]  L. Sharygin,et al.  High-temperature decontamination of vapor-air flows of methyl iodide by an inorganic sorbent based on titanium dioxide , 1997 .

[132]  H. Eckert,et al.  Mixed Halide Sodalite Solid Solution Systems. Hydrothermal Synthesis and Structural Characterization by Solid State NMR , 2003 .

[133]  R. Jubin,et al.  Fuel age impacts on gaseous fission product capture during separations , 2012 .

[134]  George H. Beall,et al.  Glass Ceramic Technology , 2002 .

[135]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[136]  R. T. Jubin,et al.  Airborne waste management technology applicable for use in reprocessing plants for control of iodine and other off-gas constituents , 1988 .

[137]  T. Ikoma,et al.  Fabrication of Transparent Hydroxyapatite Sintered Body with High Crystal Orientation by Pulse Electric Current Sintering , 2004 .

[138]  Arun S. Wagh,et al.  Chemically bonded phosphate ceramics for low-level mixed waste stabilization , 1997 .

[139]  M. Stennett,et al.  The durability of iodide sodalite , 2014 .

[140]  G. Sigel,et al.  The effect of compositional variations on the properties of rare-earth doped GeSI chalcohalide glasses , 1997 .

[141]  Mark A. Rodriguez,et al.  Competitive I2 Sorption by Cu-BTC from Humid Gas Streams , 2013 .

[142]  Kenzi Suzuki,et al.  Synthesis of new Sn incorporated layered double hydroxides and their evolution to mixed oxides , 1999 .

[143]  Brian J. Riley,et al.  Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts , 2013 .

[144]  M. Weller,et al.  Mixed halide sodalites , 1989 .

[145]  G. Lumpkin,et al.  5.22 – Minerals and Natural Analogues , 2012 .

[146]  T. Sakurai,et al.  Interaction of iodine with an extractant of 30% TBP/70% n-dodecane , 1995 .

[147]  J. Lian,et al.  Graphene-based sorbents for iodine-129 capture and sequestration , 2015 .

[148]  G. Uchiyama,et al.  Applicability of a Model Predicting Iodine-129 Profile in a Silver Nitrate Silica-Gel Column for Dissolver Off-Gas Treatment of Fuel Reprocessing , 2003 .

[149]  J. Chun,et al.  Efforts to Consolidate Chalcogels with Adsorbed Iodine , 2013 .

[150]  O. Madelung Non-tetrahedrally bonded elements and binary compounds I , 1998 .

[151]  C. Angell,et al.  Glass formation and anomalous annealing effects in the mixed oxyanion system AgIAg2SO4Ag2WO4 , 1991 .

[152]  S. Bruffey,et al.  Expanded Analysis of Hot Isostatic Pressed Iodine-Loaded Silver-Exchanged Mordenite , 2014 .

[153]  D. Strachan,et al.  Iodide and iodate sodalites for the long-term storage of iodine-129 , 1979 .

[154]  T. Narasaraju,et al.  Preparation and characterization of hydroxyl and iodide apatites of calcium and their solid solutions , 1995 .

[155]  M. Brigatti,et al.  Crystal chemistry of apatites from the Tapira carbonatite complex, Brazil , 2004 .

[156]  Gunzo Uchiyama,et al.  A Simple Model Predicting Iodine Profile in a Packed Bed of Silica-Gel Impregnated with Silver Nitrate , 2002 .

[157]  W. Morton,et al.  Hypothyroidism and spontaneous abortions among Hanford, Washington, downwinders. , 1996, Archives of environmental health.

[158]  Masayoshi Uno,et al.  Some properties of a lead vanado-iodoapatite Pb10(VO4)6I2 , 2001 .

[159]  Daryl Haefner,et al.  Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey , 2007 .

[160]  D. Bish,et al.  Aluminum effect on dissolution and precipitation under hyperalkaline conditions: II. Solid phase transformations. , 2003, Journal of environmental quality.

[161]  Y. Tamaura,et al.  A new family of anion exchangers: mixed hydroxide carbonates of Bi3+ and divalent metals showing high selectivity for SeO32− , 2000 .

[162]  Brian J. Riley,et al.  Differential etching of chalcogenides for infrared photonic waveguide structures , 2008 .

[163]  M. Flury,et al.  Analysis of precipitates from reactions of hyperalkaline solutions with soluble silica , 2005 .

[164]  M. Kendrick,et al.  New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br–Cl–I and 40Ar/39Ar age determinations , 2009 .

[165]  T. R. Thomas,et al.  Airborne elemental iodine loading capacities of metal zeolites and a method for recycling silver zeolite , 1977 .

[166]  Eric M. Pierce,et al.  Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams , 2010 .

[167]  M. Kanatzidis,et al.  Chalcogen-based aerogels as sorbents for radionuclide remediation. , 2013, Environmental science & technology.

[168]  Darryl D. Siemer,et al.  Hydroceramics, a "new" cementitious waste form material for U.S. defense-type reprocessing waste , 2002 .

[169]  James L. Krumhansl,et al.  Low‐Temperature Sintering Bi–Si–Zn‐Oxide Glasses for Use in Either Glass Composite Materials or Core/Shell 129I Waste Forms , 2011 .

[170]  A. Wagh Chemically Bonded Phosphate Ceramics , 2016 .

[171]  F. Rocca,et al.  Short range order in AgI:Ag2O:B2O3 glasses: results from EXAFS and related techniques , 1990 .

[172]  A. Koga,et al.  Adsorption of Noble Gases on Silver-mordenite , 2003 .

[173]  M. Flury,et al.  Cancrinite and sodalite formation in the presence of cesium, potassium, magnesium, calcium and strontium in Hanford tank waste simulants , 2006 .

[174]  Y. Grin,et al.  Spark plasma sintering of iodine-bearing apatite , 2010 .

[175]  T. Sakurai,et al.  The Iodine Species and Their Behavior in the Dissolution of Spent-Fuel Specimens , 1992 .