1-Malonyl-1,4-dihydropyridine as a novel carrier for specific delivery of drugs to the brain.

[1]  H. Kung,et al.  Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. , 2008, Biological & pharmaceutical bulletin.

[2]  Z. T. Wang,et al.  Antidepressant effect of Yueju-Wan ethanol extract and its fractions in mice models of despair. , 2008, Journal of ethnopharmacology.

[3]  P. Singh,et al.  Antidepressant activity of standardised extract of Marsilea minuta Linn. , 2008, Journal of ethnopharmacology.

[4]  J. Terao,et al.  Antidepressant-Like Effect of Onion (Allium cepa L.) Powder in a Rat Behavioral Model of Depression , 2008, Bioscience, biotechnology, and biochemistry.

[5]  Min Lin,et al.  A new polymorph of 2′-(4-methoxybenzylidene)isonicotinohydrazide monohydrate , 2007 .

[6]  H. Gershenfeld,et al.  Genetic Dissection of the Tail Suspension Test: A Mouse Model of Stress Vulnerability and Antidepressant Response , 2007, Biological Psychiatry.

[7]  F. A. Schroeder,et al.  Antidepressant-Like Effects of the Histone Deacetylase Inhibitor, Sodium Butyrate, in the Mouse , 2007, Biological Psychiatry.

[8]  Desuo Yang Syntheses, characterization and crystal structures of two structurally similar Schiff bases isonicotinic acid [1-(3-methoxy-2-hydroxyphenyl)methylidene]hydrazide and isonicotinic acid [1-(4-dimethylaminophenyl)methylidene]hydrazide monohydrate , 2007 .

[9]  Xue‐Fang Shi,et al.  N′-(4-Hydr­oxy-3-methoxy­benzyl­idene)isonicotinohydrazide monohydrate , 2007 .

[10]  Y. Mineur,et al.  Antidepressant-Like Effects of Ceftriaxone in Male C57BL/6J Mice , 2007, Biological Psychiatry.

[11]  C. Sergheraert,et al.  Design, synthesis and in vitro antimalarial activity of an acylhydrazone library. , 2006, Bioorganic & medicinal chemistry letters.

[12]  Sai Bi,et al.  (E)‐N‐(2‐Hydroxybenzylidene)isonicotinohydrazide , 2005 .

[13]  N. Kishore,et al.  Synthesis of isonicotinic acid N'-arylidene-N-[2-oxo-2-(4-aryl-piperazin-1-yl)-ethyl]-hydrazides as antituberculosis agents. , 2005, Bioorganic & medicinal chemistry letters.

[14]  Atta-ur-Rahman,et al.  Synthesis and in vitro leishmanicidal activity of some hydrazides and their analogues. , 2003, Bioorganic & medicinal chemistry.

[15]  H. Farag,et al.  New carrier for specific delivery of drugs to the brain. , 2003, Bioorganic & medicinal chemistry.

[16]  A. Mai,et al.  Synthesis and biological evaluation of enantiomerically pure pyrrolyl-oxazolidinones as a new class of potent and selective monoamine oxidase type A inhibitors. , 2003, Farmaco.

[17]  R. Sundberg,et al.  Advanced Organic Chemistry. Part B: Reactions and Synthesis. Fourth Edition , 2001 .

[18]  D. Cavalla,et al.  Trends in medicinal chemistry. , 1998, Drug news & perspectives.

[19]  N. Bodor,et al.  Strategies to target kyotorphin analogues to the brain. , 1998, Journal of medicinal chemistry.

[20]  X. You,et al.  p-Methoxybenzaldehyde nicotinoylhydrazone dihydrate , 1996 .

[21]  N. Bodor,et al.  Effect of molecular manipulation on the estrogenic activity of a brain-targeting estradiol chemical delivery system. , 1994, Journal of medicinal chemistry.

[22]  N. Bodor,et al.  Enhanced delivery of ganciclovir to the brain through the use of redox targeting , 1994, Antimicrobial Agents and Chemotherapy.

[23]  N. Bodor,et al.  The Effect of Dihydronicotinate N-Substitution on the Brain-Targeting Efficacy of a Zidovudine Chemical Delivery System , 1993, Pharmaceutical Research.

[24]  N. Bodor,et al.  Chemical systems for delivery of antiepileptic drugs to the central nervous system , 1992, Epilepsy Research.

[25]  N. Bodor,et al.  Improved Delivery Through Biological Membranes. XLV. Synthesis, Physical-Chemical Evaluation, and Brain Uptake Studies of 2-Chloroethyl Nitrosourea Delivery Systems , 1992, Pharmaceutical Research.

[26]  N. Bodor,et al.  Solubilization and Stabilization of a Benzylpenicillin Chemical Delivery System by 2-Hydroxypropyl-β-cyclodextrin , 1991, Pharmaceutical Research.

[27]  N. Bodor,et al.  Potential Treatment of Herpes Simplex Virus Encephalitis by Brain‐Specific Delivery of Trifluorothymidine Using a Dihydropyridine ⇆ Pyridinium Salt Type Redox Delivery System , 1986 .

[28]  T. C. Bruice,et al.  Ferricyanide oxidation of dihydropyridines and analogs , 1984 .

[29]  N. Bodor,et al.  Improved delivery through biological membranes. 11. A redox chemical drug-delivery system and its use for brain-specific delivery of phenylethylamine. , 1983, Journal of medicinal chemistry.

[30]  N. Bodor,et al.  Site-specific, sustained release of drugs to the brain. , 1981, Science.

[31]  Stanley I. Rapoport,et al.  Blood-Brain Barrier in Physiology and Medicine , 1976 .

[32]  J. Kuthan,et al.  Chemistry of dihydropyridines , 1972 .

[33]  L. Sternbach,et al.  Quinazolines and 1,4-benzodiazepines. XLV. 1,4-Benzodiazepines from 4-isoquinolinones , 1970 .

[34]  N. Bodor,et al.  Anxiolytic activity of a brain delivery system for GABA , 2004, Psychopharmacology.

[35]  N. Greig,et al.  Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain , 2004, Cancer Chemotherapy and Pharmacology.

[36]  N. Bodor,et al.  Reactivity of biologically important reduced pyridines V. Relative importance of electron versus proton loss in ferricyanide-mediated oxidation of dihydronicotinamides , 1989 .

[37]  J. H. Boom,et al.  Mild basic and highly selective hydrolysis of an aryl-alkyl 1-H-phosphonate diester: Preparation of the mono-1-H-phosphonylated dipeptide Z-ser(OPO2H2)-tyr(OH)NH2. , 1987 .