ON THE MOTION OF A 24-HOUR SATELLITE
暂无分享,去创建一个
The theory of a 24-hour satellite and the conditions for its stability are given. Bohlin's resonance theory was applied to obtain the solution. It is shown that the integrals of the problem can be represented in the form of a series with respect to the small parameter, w, which would be proportional to the mean motion of the critical argument in a nonresonance case. Expressions for the period of libration and the mean motion of the critical argument in the unstable case, and a system of formulas that can be used in the computation for any particular case, are given.
[1] L. Blitzer,et al. Effect of ellipticity of the equator on 24‐hour nearly circular satellite orbits , 1962 .
[2] I. Izsak. On the Critical Inclination in Satellite Theory , 1962 .
[3] Gen-Ichiro Hori,et al. The motion of an artificial satellite in the vicinity of the critical inclination , 1960 .
[4] Dirk Brouwer,et al. SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .