Contour and boundary detection improved by surround suppression of texture edges

We propose a computational step, called surround suppression, to improve detection of object contours and region boundaries in natural scenes. This step is inspired by the mechanism of non-classical receptive field inhibition that is exhibited by most orientation selective neurons in the primary visual cortex and that influences the perception of groups of edges or lines. We illustrate the principle and the effect of surround suppression by adding this step to the Canny edge detector. The resulting operator responds strongly to isolated lines and edges, region boundaries, and object contours, but exhibits a weaker or no response to texture edges. Additionally, we introduce a new post-processing method that further suppresses texture edges. We use natural images with associated subjectively defined desired output contour and boundary maps to evaluate the performance of the proposed additional steps. In a contour detection task, the Canny operator augmented with the proposed suppression and post-processing step achieves better results than the traditional Canny edge detector and the SUSAN edge detector. The performance gain is highest at scales for which these latter operators strongly react to texture in the input image.

[1]  Rama Chellappa,et al.  A unified approach to boundary perception: edges, textures, and illusory contours , 1993, IEEE Trans. Neural Networks.

[2]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[3]  Denis G. Pelli,et al.  The visual filter mediating letter identification , 1994, Nature.

[4]  Peter Meer,et al.  Edge Detection with Embedded Confidence , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dmitry B. Goldgof,et al.  Comparison of Edge Detector Performance through Use in an Object Recognition Task , 2001, Comput. Vis. Image Underst..

[6]  Dariu Gavrila,et al.  Multi-feature hierarchical template matching using distance transforms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[7]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[9]  R. Haralick Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[11]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[12]  Robert M. Haralick,et al.  Integrated Directional Derivative Gradient Operator , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Jean-Bernard Martens,et al.  Local orientation analysis in images by means of the Hermite transform , 1997, IEEE Trans. Image Process..

[14]  Nicolai Petkov,et al.  Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells , 1997, Biological Cybernetics.

[15]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[16]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[17]  Sean Dougherty,et al.  Edge detector evaluation using empirical ROC curves , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[18]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[19]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[20]  Gang Chen,et al.  Edge detection by regularized cubic B-spline fitting , 1995, IEEE Trans. Syst. Man Cybern..

[21]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  H. K. Nishihara,et al.  CARTOON: A Biologically Motivated Edge Detection Algorithm , 1982 .

[23]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[24]  Thomas S. Huang,et al.  Image processing , 1971 .

[25]  Robyn A. Owens,et al.  Feature detection from local energy , 1987, Pattern Recognit. Lett..

[26]  R. B. Pinter,et al.  Primitive Features by Steering, Quadrature, and Scale , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Kevin W. Bowyer,et al.  Comparison of Edge Detectors Using an Object Recognition Task , 1999, CVPR.

[28]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[29]  Z Li,et al.  Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. , 1999, Network.

[30]  L. Schwartz Théorie des distributions , 1966 .

[31]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[32]  W. D. Ross,et al.  Visual brain and visual perception: how does the cortex do perceptual grouping? , 1997, Trends in Neurosciences.

[33]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Dmitry B. Goldgof,et al.  An Objective Comparison Methodology of Edge Detection Algorithms Using a Structure from Motion Task , 1998, CVPR.

[36]  Nicolai Petkov,et al.  Distance sets for shape filters and shape recognition , 2003, IEEE Trans. Image Process..

[37]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Shigeru Ando,et al.  Image Field Categorization and Edge/Corner Detection from Gradient Covariance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  P. H. Gregson,et al.  Using Angular Dispersion of Gradient Direction for Detecting Edge Ribbons , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  J. Urry Complexity , 2006, Interpreting Art.

[42]  Nicolai Petkov,et al.  Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition , 2003, Biological cybernetics.

[43]  Sugata Ghosal,et al.  Detection of composite edges , 1994, IEEE Trans. Image Process..

[44]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Steven W. Zucker,et al.  Complexity, Confusion, and Perceptual Grouping. Part II: Mapping Complexity , 2004, International Journal of Computer Vision.

[46]  Werner Frei,et al.  Fast Boundary Detection: A Generalization and a New Algorithm , 1977, IEEE Transactions on Computers.

[47]  Whitman A. Richards Natural Computation , 1988 .

[48]  Steven W. Zucker,et al.  Complexity, Confusion, and Perceptual Grouping. Part II: Mapping Complexity , 2004, Journal of Mathematical Imaging and Vision.

[49]  Yali Amit,et al.  Joint Induction of Shape Features and Tree Classifiers , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Djemel Ziou,et al.  Edge Detection Techniques-An Overview , 1998 .

[51]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[52]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Kevin W. Bowyer,et al.  Empirical evaluation techniques in computer vision , 1998 .

[54]  Nicolai Petkov,et al.  Contour detection based on nonclassical receptive field inhibition , 2003, IEEE Trans. Image Process..

[55]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[56]  Ellen C. Hildreth,et al.  The detection of intensity changes by computer and biological vision systems , 1983, Comput. Vis. Graph. Image Process..

[57]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[58]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[59]  B. S. Manjunath,et al.  EdgeFlow: a technique for boundary detection and image segmentation , 2000, IEEE Trans. Image Process..

[60]  Yunmei Chen,et al.  Smoothing and Edge Detection by Time-Varying Coupled Nonlinear Diffusion Equations , 2001, Comput. Vis. Image Underst..

[61]  H. C. Nothdurft,et al.  Texture segmentation and pop-out from orientation contrast , 1991, Vision Research.

[62]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[64]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[65]  Kim L. Boyer,et al.  "On the localization performance measure and optimal edge detection" , 1994, IEEE Trans. Pattern Anal. Mach. Intell..