Reconstruction Threshold for the Hardcore Model

In this paper we consider the reconstruction problem on the tree for the hardcore model. We determine new bounds for the nonreconstruction regime on the k-regular tree showing nonreconstruction when λ (e+o(1)) ln2 k. We discuss the relationship for finding large independent sets in sparse random graphs and to the mixing time of Markov chains for sampling independent sets on trees.

[1]  H. Kesten,et al.  Additional Limit Theorems for Indecomposable Multidimensional Galton-Watson Processes , 1966 .

[2]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[3]  J. Ruiz,et al.  On the purity of the limiting gibbs state for the Ising model on the Bethe lattice , 1995 .

[4]  N. Wormald Differential Equations for Random Processes and Random Graphs , 1995 .

[5]  Y. Peres,et al.  Broadcasting on trees and the Ising model , 2000 .

[6]  Yuval Peres,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  Elchanan Mossel Reconstruction on Trees: Beating the Second Eigenvalue , 2001 .

[8]  Elchanan Mossel,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  Elchanan Mossel,et al.  Survey: Information Flow on Trees , 2004 .

[10]  Alan M. Frieze,et al.  Random Regular Graphs of Non-Constant Degree: Independence and Chromatic Number , 2002, Combinatorics, Probability and Computing.

[11]  Elchanan Mossel,et al.  Information flow on trees , 2001, math/0107033.

[12]  A. Sinclair,et al.  Glauber Dynamics on Trees: Boundary Conditions and Mixing Time , 2003, math/0307336.

[13]  James B. Martin Reconstruction Thresholds on Regular Trees , 2003, DRW.

[14]  Peter Winkler,et al.  A second threshold for the hard‐core model on a Bethe lattice , 2004, Random Struct. Algorithms.

[15]  Elchanan Mossel,et al.  Robust reconstruction on trees is determined by the second eigenvalue , 2004, math/0406447.

[16]  Fabio Martinelli,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2004, SODA '04.

[17]  Elchanan Mossel,et al.  Optimal phylogenetic reconstruction , 2005, STOC '06.

[18]  Elchanan Mossel,et al.  The Kesten-Stigum Reconstruction Bound Is Tight for Roughly Symmetric Binary Channels , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[19]  M. Mézard,et al.  Reconstruction on Trees and Spin Glass Transition , 2005, cond-mat/0512295.

[20]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[21]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Allan Sly Reconstruction of symmetric Potts Models , 2008, 0811.1208.

[23]  Allan Sly,et al.  Communications in Mathematical Physics Reconstruction of Random Colourings , 2009 .

[24]  Allan Sly,et al.  Reconstruction for the Potts model , 2009, STOC '09.

[25]  Y. Peres,et al.  Mixing Time of Critical Ising Model on Trees is Polynomial in the Height , 2009, 0901.4152.

[26]  Eric Vigoda,et al.  Phase transition for the mixing time of the Glauber dynamics for coloring regular trees , 2009, SODA '10.

[27]  Andrea Montanari,et al.  Reconstruction and Clustering in Random Constraint Satisfaction Problems , 2011, SIAM J. Discret. Math..

[28]  Eric Vigoda,et al.  Reconstruction for Colorings on Trees , 2007, SIAM J. Discret. Math..