Kalman smoothing with persistent nuisance parameters

Kalman filtering and smoothing methods are key to a broad range of applications, including navigation, financial tracking, and weather prediction. Many such applications contain nuisance parameters, such as persistent bias, and classic approaches estimate these parameters by augmenting the state and posing appropriate constraints on their dynamics. These approaches work in practice, but they are difficult to interpret, and can result in poor conditioning. In this paper, we propose a variant of Kalman smoothing models that includes both dynamic state variables and static biases, but estimate only a single value for each static bias variable. We incorporate both kinds of variables into an augmented optimization framework, and design efficient algorithms for estimation, providing computational complexity and numerical stability guarantees, and a straightforward method to estimate the variance of the bias estimates. We illustrate the efficacy of the proposed method in two examples, including the classic navigation problem of estimating attitude from biased gyro measurements.

[1]  G. Pillonetto,et al.  An $\ell _{1}$-Laplace Robust Kalman Smoother , 2011, IEEE Transactions on Automatic Control.

[2]  James V. Burke,et al.  An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization , 2009, Autom..

[3]  David Q. Mayne,et al.  A solution of the smoothing problem for linear dynamic systems , 1966, Autom..

[4]  Zeljko M. Durovic,et al.  Robust estimation with unknown noise statistics , 1999, IEEE Trans. Autom. Control..

[5]  Georgios B. Giannakis,et al.  Doubly Robust Smoothing of Dynamical Processes via Outlier Sparsity Constraints , 2011, IEEE Transactions on Signal Processing.

[6]  Randy Paffenroth,et al.  Mitigation of biases using the Schmidt-Kalman filter , 2007, SPIE Optical Engineering + Applications.

[7]  Bradley M. Bell,et al.  The marginal likelihood for parameters in a discrete Gauss-Markov process , 2000, IEEE Trans. Signal Process..

[8]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[9]  William S Agee,et al.  Optimal Estimation of Measurement Bias , 1972 .

[10]  Aleksandr Y. Aravkin,et al.  Sparse/robust estimation and Kalman smoothing with nonsmooth log-concave densities: modeling, computation, and theory , 2013, J. Mach. Learn. Res..

[11]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[12]  P. Abbeel,et al.  Kalman filtering , 2020, IEEE Control Systems Magazine.

[13]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[16]  Marc Maufort Global Positioning Systems , 2013 .

[17]  Toshiyuki Aoki,et al.  Dynamic Sensor Bias Correction for Attitude Estimation using Unscented Kalman Filter in Autonomous Vehicle , 2011 .

[18]  B. Friedland Treatment of bias in recursive filtering , 1969 .

[19]  Aleksandr Y. Aravkin,et al.  Kalman smoothing and block tridiagonal systems: new connections and numerical stability results , 2013, 1303.5237.

[20]  J. Burke,et al.  Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation , 2013, 1303.1993.

[21]  Aleksandr Y. Aravkin,et al.  Robust and Trend-Following Student's t Kalman Smoothers , 2013, SIAM J. Control. Optim..

[22]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[23]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[24]  R.Y. Novoselov,et al.  Mitigating the effects of residual biases with Schmidt-Kalman filtering , 2005, 2005 7th International Conference on Information Fusion.

[25]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .