Distance threshold similarity searches on spatiotemporal trajectories using GPGPU

The processing of moving object trajectories arises in many application domains. We focus on a trajectory similarity search, the distance threshold search, which finds all trajectories within a given distance of a query trajectory over a time interval. A multithreaded CPU implementation that makes use of an in-memory R-tree index can achieve high parallel efficiency. We propose a GPGPU implementation that avoids index-trees altogether and instead features a GPU-friendly indexing scheme. We show that our GPU implementation compares well to the CPU implementation. One interesting question is that of creating efficient query batches (so as to reduce both memory pressure and computation cost on the GPU). We design algorithms for creating such batches, and we find that using fixed-size batches is sufficient in practice. We develop an empirical response time model that can be used to pick a good batch size.

[1]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD '00.

[2]  Samuel Madden,et al.  TrajStore: An adaptive storage system for very large trajectory data sets , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[3]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[4]  Le Gruenwald,et al.  Parallel online spatial and temporal aggregations on multi-core CPUs and many-core GPUs , 2014, Inf. Syst..

[5]  Yunjun Gao,et al.  Efficient k-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories , 2007, Journal of Computer Science and Technology.

[6]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[7]  Ralf Hartmut Güting,et al.  Efficient k-nearest neighbor search on moving object trajectories , 2010, The VLDB Journal.

[8]  Le Gruenwald,et al.  Parallel spatial query processing on GPUs using R-trees , 2013, BigSpatial '13.

[9]  Henri Casanova,et al.  Parallel In-Memory Distance Threshold Queries on Trajectory Databases , 2014, DBKDA 2014.

[10]  Nikos Pelekis,et al.  Algorithms for Nearest Neighbor Search on Moving Object Trajectories , 2007, GeoInformatica.

[11]  Dinesh Manocha,et al.  Fast GPU-based locality sensitive hashing for k-nearest neighbor computation , 2011, GIS.

[12]  Tikara Hosino,et al.  Multi‐GPU algorithm for k‐nearest neighbor problem , 2012, Concurr. Comput. Pract. Exp..

[13]  Chris Jermaine,et al.  Closest-Point-of-Approach Join for Moving Object Histories , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[14]  Nikos Pelekis,et al.  Nearest Neighbor Search on Moving Object Trajectories , 2005, SSTD.

[15]  Le Gruenwald,et al.  U2STRA: high-performance data management of ubiquitous urban sensing trajectories on GPGPUs , 2012, CDMW '12.

[16]  Martin Krulis,et al.  Combining CPU and GPU architectures for fast similarity search , 2012, Distributed and Parallel Databases.

[17]  M. Gowanlock,et al.  A model of habitability within the Milky Way galaxy. , 2010, Astrobiology.

[18]  Michael Gowanlock In-Memory Distance Threshold Queries on Moving Object Trajectories , 2014 .

[19]  Henri Casanova,et al.  Technical Report: Parallel Distance Threshold Query Processing for Spatiotemporal Trajectory Databases on the GPU , 2014, ArXiv.

[20]  Timos K. Sellis,et al.  Spatio-temporal indexing for large multimedia applications , 1996, Proceedings of the Third IEEE International Conference on Multimedia Computing and Systems.

[21]  Martin D. F. Wong,et al.  Parallel implementation of R-trees on the GPU , 2012, 17th Asia and South Pacific Design Automation Conference.

[22]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.