A one-dimensional Keller-Segel equation with a drift issued from the boundary
暂无分享,去创建一个
[1] Benoît Perthame,et al. Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .
[2] Christian Schmeiser,et al. The two-dimensional Keller-Segel model after blow-up , 2009 .
[3] M Piel,et al. Rebuilding cytoskeleton roads: active-transport-induced polarization of cells. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] Wojbor A. Woyczyński,et al. Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..
[5] Benoît Perthame,et al. Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .
[6] Benoît Perthame,et al. Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .
[7] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[8] W. Jäger,et al. On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .
[9] Miguel A. Herrero,et al. Singularity formation in the one-dimensional supercooled Stefan problem , 1996, European Journal of Applied Mathematics.
[10] M. A. Herrero,et al. Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.
[11] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[12] Piotr Biler,et al. Existence and nonexistence of solutions for a model of gravitational interaction of particles, I , 1993 .
[13] Philippe Laurenccot,et al. Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.
[14] José A. Carrillo,et al. Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .
[15] Vincent Calvez,et al. Blow-up, Concentration Phenomenon and Global Existence for the Keller–Segel Model in High Dimension , 2010, 1003.4182.
[16] Vincent Calvez,et al. Modified Keller-Segel system and critical mass for the log interaction kernel , 2006 .
[17] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..
[18] Dirk Horstmann,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .
[19] José A. Carrillo,et al. Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .
[20] J. J. L. Velázquez,et al. Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions , 2004, SIAM J. Appl. Math..
[21] Dirk Horstmann,et al. Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.
[22] B. Perthame. Transport Equations in Biology , 2006 .
[23] J. Carrillo,et al. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.