A one-dimensional Keller-Segel equation with a drift issued from the boundary

Abstract We investigate in this Note the dynamics of a one-dimensional Keller–Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller–Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This Note is completed with a brief introduction to a more realistic model (still one-dimensional).

[1]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[2]  Christian Schmeiser,et al.  The two-dimensional Keller-Segel model after blow-up , 2009 .

[3]  M Piel,et al.  Rebuilding cytoskeleton roads: active-transport-induced polarization of cells. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Wojbor A. Woyczyński,et al.  Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..

[5]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[6]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[7]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[8]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[9]  Miguel A. Herrero,et al.  Singularity formation in the one-dimensional supercooled Stefan problem , 1996, European Journal of Applied Mathematics.

[10]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[11]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[12]  Piotr Biler,et al.  Existence and nonexistence of solutions for a model of gravitational interaction of particles, I , 1993 .

[13]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[14]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[15]  Vincent Calvez,et al.  Blow-up, Concentration Phenomenon and Global Existence for the Keller–Segel Model in High Dimension , 2010, 1003.4182.

[16]  Vincent Calvez,et al.  Modified Keller-Segel system and critical mass for the log interaction kernel , 2006 .

[17]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions , 2004, SIAM J. Appl. Math..

[18]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[19]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[20]  J. J. L. Velázquez,et al.  Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions , 2004, SIAM J. Appl. Math..

[21]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[22]  B. Perthame Transport Equations in Biology , 2006 .

[23]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.