Identification of the hygrothermal properties of a building envelope material by the covariance matrix adaptation evolution strategy

This paper proposes the application of the covariance matrix adaptation (CMA) evolution strategy for the identification of building envelope materials hygrothermal properties. All material properties are estimated on the basis of local temperature and relative humidity measurements, by solving the inverse heat and moisture transfer problem. The applicability of the identification procedure is demonstrated in two stages: first, a numerical benchmark is developed and used as to show the potential identification accuracy, justify the choice for a Tikhonov regularization term in the fitness evaluation, and propose a method for its appropriate tuning. Then, the procedure is applied on the basis of experimental measurements from an instrumented test cell, and compared to the experimental characterization of the observed material. Results show that an accurate estimation of all hygrothermal properties of a building material is feasible, if the objective function of the inverse problem is carefully defined.

[1]  Chadia Zayane,et al.  Identification d'un modèle de comportement thermique de bâtiment à partir de sa courbe de charge , 2011 .

[2]  Ralph Evins,et al.  A review of computational optimisation methods applied to sustainable building design , 2013 .

[3]  Shengwei Wang,et al.  Optimal simplified thermal models of building envelope based on frequency domain regression using genetic algorithm , 2007 .

[4]  Jan Carmeliet,et al.  CONSERVATIVE MODELLING OF THE MOISTURE AND HEAT TRANSFER IN BUILDING COMPONENTS UNDER ATMOSPHERIC EXCITATION , 2007 .

[5]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[6]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[7]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[8]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[9]  Daniel Petit,et al.  Problèmes inverses en diffusion thermique - Outils spécifiques de conduction inverse et de régularisation , 2011 .

[10]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications , 2009 .

[11]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[12]  Fariborz Haghighat,et al.  Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network , 2010 .

[13]  J. Roux,et al.  Influence of concrete fracture on the rain infiltration and thermal performance of building facades , 2013 .

[14]  Daniel Petit,et al.  Problèmes inverses en diffusion thermique - Formulation et résolution du problème des moindres carrés , 2018, Physique énergétique.

[15]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[16]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[17]  George E. P. Box,et al.  Bayesian Inference in Statistical Analysis: Box/Bayesian , 1992 .

[18]  Alfred Jean Philippe Lauret,et al.  A genetic algorithm applied to the validation of building thermal models , 2012, ArXiv.

[19]  Shengwei Wang,et al.  Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm , 2006 .

[20]  B. Blackwell,et al.  Inverse Heat Conduction: Ill-Posed Problems , 1985 .

[21]  Jan Carmeliet,et al.  Assessment Method of Numerical Prediction Models for Combined Heat, Air and Moisture Transfer in Building Components: Benchmarks for One-dimensional Cases , 2004 .

[22]  Nicholas Zabaras,et al.  A Bayesian inference approach to the inverse heat conduction problem , 2004 .

[23]  Karim Limam,et al.  State-parameter identification for accurate building energy audits , 2013 .

[24]  Jari P. Kaipio,et al.  The Bayesian Framework for Inverse Problems in Heat Transfer , 2011 .

[25]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems , 2010 .

[26]  Simon Rouchier,et al.  Hygorthermal performance assessment of damaged building materials , 2012 .

[27]  Philippe Rigo,et al.  A review on simulation-based optimization methods applied to building performance analysis , 2014 .

[28]  D. Gossard,et al.  Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network , 2013 .

[29]  Keith A. Woodbury,et al.  GENETIC ALGORITHM IN SOLUTION OF INVERSE HEAT CONDUCTION PROBLEMS , 1995 .

[30]  M. Gadala,et al.  Low cost surrogate model based evolutionary optimization solvers for inverse heat conduction problem , 2013 .

[31]  Yeonsook Heo,et al.  Calibration of building energy models for retrofit analysis under uncertainty , 2012 .

[32]  P. Perré,et al.  Vers une méthode de conception HYGRO-thermique des BATiments performants : démarche du projet HYGRO-BAT , 2014 .

[33]  Tadj Oreszczyn,et al.  Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements , 2014 .

[34]  Per Christian Hansen,et al.  Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..

[35]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[36]  Frédéric Bourquin,et al.  On-Site Building Walls Characterization , 2013 .

[37]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[38]  Aris Tsangrassoulis,et al.  Algorithms for optimization of building design: A review , 2014 .

[39]  Louis Gosselin,et al.  Review of utilization of genetic algorithms in heat transfer problems , 2009 .