A systematic rate controller for MPEG-4 FGS video streaming

Abstract. This paper proposes a systematic rate controller (SRC) for content-aware streaming of MPEG-4 FGS video over the Internet. An active layer dropping technique is proposed to provide both coarse-grain and fine-granularity scalability of smooth quality adaptation to bandwidth fluctuations and bit-rate variations of streamed video over a general time-scale. The smooth quality adaptation is realized through the mode and state transition of a state machine that implements the SRC. The SRC effectively uses available bandwidth and client buffer by forward-shifting the FGS video stream. It provides protection to video segments with important content by introducing a content-aware priority-based layer model for the MPEG-4 FGS video stream.

[1]  Sheila S. Hemami,et al.  A comparison of temporal scalability techniques , 1999, IEEE Trans. Circuits Syst. Video Technol..

[2]  Wu-chi Feng,et al.  Proactive buffer management for the streamed delivery of stored video , 1998, MULTIMEDIA '98.

[3]  Shih-Fu Chang,et al.  Principles and applications of content-aware video communication , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[4]  Mohammed Ghanbari,et al.  A frequency-domain video transcoder for dynamic bit-rate reduction of MPEG-2 bit streams , 1998, IEEE Trans. Circuits Syst. Video Technol..

[5]  Hiroyuki Katata,et al.  Temporal-scalable coding based on image content , 1997, IEEE Trans. Circuits Syst. Video Technol..

[6]  Wenjun Zeng,et al.  Geometric-structure-based error concealment with novel applications in block-based low-bit-rate coding , 1999, IEEE Trans. Circuits Syst. Video Technol..

[7]  Alexandros Eleftheriadis,et al.  Streaming Video Using Dynamic Rate Shaping and TCP Congestion Control , 1998, J. Vis. Commun. Image Represent..

[8]  Frank Müller,et al.  Spatially Scalable Video Compression Employing Resolution Pyramids , 1997, IEEE J. Sel. Areas Commun..

[9]  Yiwei Thomas Hou,et al.  On end-to-end architecture for transporting MPEG-4 video over the Internet , 2000, IEEE Trans. Circuits Syst. Video Technol..

[10]  Sethuraman Panchanathan,et al.  Image/video spatial scalability in compressed domain , 1998, IEEE Trans. Ind. Electron..

[11]  Steven McCanne,et al.  Limited retransmission of real-time layered multimedia , 1998, 1998 IEEE Second Workshop on Multimedia Signal Processing (Cat. No.98EX175).

[12]  Tihao Chiang,et al.  On End-to-End Transport Architechture for MPEG-4 Video Streaming over the Internet , 1999 .

[13]  Avideh Zakhor,et al.  Real-Time Internet Video Using Error Resilient Scalable Compression and TCP-Friendly Transport Protocol , 1999, IEEE Trans. Multim..

[14]  Deborah Estrin,et al.  An end-to-end architecture for quality adaptive streaming applications in the internet , 2000 .

[15]  Keith W. Ross,et al.  Optimal streaming of layered video , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[16]  E. J. Weldon,et al.  Evaluation of the performance of error-correcting codes on a Gilbert channel , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[17]  Mark Handley,et al.  Equation-based congestion control for unicast applications , 2000, SIGCOMM 2000.

[18]  Ming-Ting Sun,et al.  Motion Vector Refinement for High-Performance Transcoding , 1999, IEEE Trans. Multim..

[19]  Mark Handley,et al.  Equation-based congestion control for unicast applications , 2000, SIGCOMM.

[20]  Michael R. Frater,et al.  Efficient drift-free signal-to-noise ratio scalability , 2000, IEEE Trans. Circuits Syst. Video Technol..