The need for laboratory work to aid in the understanding of exoplanetary atmospheres

Advancements in our understanding of exoplanetary atmospheres, from massive gas giants down to rocky worlds, depend on the constructive challenges between observations and models. We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize the atmospheric structure, composition, and circulation of these worlds. These improvements stem from significant investments in new missions and facilities, such as JWST and the several planned ground-based extremely large telescopes. However, while exoplanet science currently has a wide range of sophisticated models that can be applied to the tide of forthcoming observations, the trajectory for preparing these models for the upcoming observational challenges is unclear. Thus, our ability to maximize the insights gained from the next generation of observatories is not certain. In many cases, uncertainties in a path towards model advancement stems from insufficiencies in the laboratory data that serve as critical inputs to atmospheric physical and chemical tools. We outline a number of areas where laboratory or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry. Specifically highlighted are needs for: (1) molecular opacity linelists with parameters for a diversity of broadening gases, (2) extended databases for collision-induced absorption and dimer opacities, (3) high spectral resolution opacity data for relevant molecular species, (4) laboratory studies of haze and condensate formation and optical properties, (5) significantly expanded databases of chemical reaction rates, and (6) measurements of gas photo-absorption cross sections at high temperatures. We hope that by meeting these needs, we can make the next two decades of exoplanet science as productive and insightful as the previous two decades. (abr)

[1]  Dmitry Savransky,et al.  Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d , 2014 .

[2]  B. Demory,et al.  UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS , 2013, 1309.5956.

[3]  A. Misra,et al.  3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS , 2015, 1510.01706.

[4]  C. Hasenkopf Optical and Hygroscopic Studies of Aerosols In Simulated Planetary Atmospheres , 2011 .

[5]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[6]  Laurence S. Rothman,et al.  New section of the HITRAN database: Collision-induced absorption (CIA) , 2012 .

[7]  Hannah R. Wakeford,et al.  Transmission spectral properties of clouds for hot Jupiter exoplanets , 2014, 1409.7594.

[8]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[9]  L. Decin,et al.  New chemical scheme for studying carbon-rich exoplanet atmospheres , 2015, 1502.03567.

[10]  Bruce Macintosh,et al.  SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b , 2015, 1503.03539.

[11]  K. Cahoy,et al.  THE ATMOSPHERES OF EARTHLIKE PLANETS AFTER GIANT IMPACT EVENTS , 2014, 1401.1499.

[12]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[13]  Shawn Domagal-Goldman,et al.  A bistable organic-rich atmosphere on the Neoarchaean Earth , 2012 .

[14]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[15]  C. Helling,et al.  Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .

[16]  Tyler D. Robinson,et al.  Warming early Mars with CO 2 and H 2 , 2014 .

[17]  M. Marley,et al.  On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets , 2014, 1410.6512.

[18]  M. Claire,et al.  Multiple oscillations in Neoarchaean atmospheric chemistry , 2015 .

[19]  Simon Albrecht,et al.  The signature of orbital motion from the dayside of the planet τ Boötis b , 2012, Nature.

[20]  Chemistry of Low Mass Substellar Objects , 2006, astro-ph/0601381.

[21]  C. Muller Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry , 1987 .

[22]  Francis Codron,et al.  Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3‐D GCM , 2013, 1310.4286.

[23]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[24]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[25]  Jr.,et al.  Chemistry of Low Mass Substellar Objects , 2006, astro-ph/0601381.

[26]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[27]  Jonathan C. McDowell,et al.  James Webb Space Telescope , 2004 .

[28]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[29]  D. Saumon,et al.  WATER CLOUDS IN Y DWARFS AND EXOPLANETS , 2014, 1404.0005.

[30]  F. Selsis,et al.  The impact of atmospheric circulation on the chemistry of the hot Jupiter HD 209458b , 2012, 1210.6627.

[31]  B. A. Voronin,et al.  Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars) , 2014 .

[32]  F. Selsis,et al.  High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets , 2013, 1302.2432.

[33]  Jerry Nelson,et al.  The status of the Thirty Meter Telescope project , 2008, Astronomical Telescopes + Instrumentation.

[34]  L. Schaefer,et al.  VAPORIZATION OF THE EARTH: APPLICATION TO EXOPLANET ATMOSPHERES , 2011, 1108.4660.

[35]  K. Heng,et al.  CARBON DIOXIDE IN EXOPLANETARY ATMOSPHERES: RARELY DOMINANT COMPARED TO CARBON MONOXIDE AND WATER IN HOT, HYDROGEN-DOMINATED ATMOSPHERES , 2015, 1507.01944.

[36]  Roda Bounaceur,et al.  A chemical model for the atmosphere of hot Jupiters , 2012, 1208.0560.

[37]  J. Jimenez,et al.  The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth. , 2010, Astrobiology.

[38]  N. S. Barnett,et al.  Private communication , 1969 .

[39]  Christopher P. McKay,et al.  Organic haze on Titan and the early Earth , 2006, Proceedings of the National Academy of Sciences.

[40]  H. Imanaka,et al.  Role of photoionization in the formation of complex organic molecules in Titan's upper atmosphere , 2007 .

[41]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[42]  R. J. de Kok,et al.  ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY , 2015, 1512.05175.

[43]  J. Kasting,et al.  Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere , 2014 .

[44]  A. Muñoz,et al.  Physical and chemical aeronomy of HD 209458b , 2007 .

[45]  Ignasi Ribas,et al.  WEIGHING THE NON-TRANSITING HOT JUPITER τ Boo b , 2012, 1206.6197.

[46]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[47]  Pressure broadening coefficients of H 2 O induced by CO 2 for Venus atmosphere , 2009 .

[48]  T. Y. Chesnokova,et al.  Estimate of the J′J″ dependence of water vapor line broadening parameters , 2010 .

[49]  L. Kedziora-Chudczer,et al.  Modelling the spectra of planets, brown dwarfs and stars using vstar , 2011, 1109.3748.

[50]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[51]  Accuracy tests of radiation schemes used in hot Jupiter global circulation models , 2014, 1402.0814.

[52]  D. W. Strecker,et al.  For infrared spectrophotometry of Jupiter and Saturn , 1978 .

[53]  F. Selsis,et al.  The atmospheric chemistry of the warm Neptune GJ 3470b: Influence of metallicity and temperature on the CH4/CO ratio , 2013, 1312.5163.

[54]  J. Fortney,et al.  THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS , 2011, 1104.5477.

[55]  I. V. Ptashnik,et al.  Water vapour self-continuum and water dimers: 1. Analysis of recent work , 2011 .

[56]  C. Chyba,et al.  The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases , 1997, Science.

[57]  T. Koskinen,et al.  ELECTRON DENSITIES AND ALKALI ATOMS IN EXOPLANET ATMOSPHERES , 2014, 1410.8102.

[58]  T. Vesala Radiative Transfer in the Atmosphere and Ocean , 2003 .

[59]  R. J. de Kok,et al.  Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b , 2014, 1404.3769.

[60]  P. Lavvas,et al.  Energy deposition and primary chemical products in Titan’s upper atmosphere , 2010 .

[61]  P. Bernath,et al.  EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES , 2015, 1510.06982.

[62]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[63]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[64]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[65]  R. Hanson,et al.  Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K , 2002 .

[66]  M. Osorio,et al.  Earth’s transmission spectrum from lunar eclipse observations , 2009, Nature.

[67]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[68]  James F. Kasting,et al.  A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b , 2011, 1110.2793.

[69]  M. Koshi,et al.  Photodissociation of O2 and CO2 from vibrationally excited states at high temperatures , 1991 .

[70]  Nina N. Lavrentieva,et al.  CH3CN self-broadening coefficients and their temperature dependences for the Earth and Titan atmospheres , 2015 .

[71]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[72]  R. J. de Kok,et al.  Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm , 2013, 1307.1133.

[73]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[74]  Sergei N. Yurchenko,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012 .

[75]  M. Cushing,et al.  MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS , 2012, 1205.6488.

[76]  P. Read,et al.  A new, fast and flexible radiative transfer method for Venus general circulation models , 2015 .

[77]  Mark C. Clampin Overview of the James Webb Space Telescope and its Capabilities for Exoplanet Science , 2010 .

[78]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[79]  F. Allard,et al.  A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres , 2008, 0809.3657.

[80]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[81]  W. Thi,et al.  Dust in brown dwarfs and extra-solar planets - I. Chemical composition and spectral appearance of quasi-static cloud layers , 2008, 0803.4315.

[82]  O. Toon,et al.  Potential climatic impact of organic haze on early Earth. , 2011, Astrobiology.

[83]  J. Moses Chemical kinetics on extrasolar planets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  J. Waite,et al.  The Process of Tholin Formation in Titan's Upper Atmosphere , 2007, Science.

[85]  Shawn Domagal-Goldman,et al.  DETECTING AND CONSTRAINING N2 ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS , 2015, 1507.07945.

[86]  Kerri Cahoy,et al.  THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA , 2015, 1511.01492.

[87]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[88]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[89]  R. Pierrehumbert,et al.  HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE , 2011, 1105.0021.

[90]  M. Marley,et al.  METHANE, CARBON MONOXIDE, AND AMMONIA IN BROWN DWARFS AND SELF-LUMINOUS GIANT PLANETS , 2014, 1408.6283.

[91]  Tamás Turányi,et al.  Analysis of Kinetic Reaction Mechanisms , 2014 .

[92]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[93]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[94]  J. Spyromilio,et al.  European Extremely Large Telescope: progress report , 2014, Astronomical Telescopes and Instrumentation.

[95]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[96]  Laurence S. Rothman,et al.  HITRAN HAWKS and HITEMP: high-temperature molecular database , 1995, Defense, Security, and Sensing.

[97]  K. Zahnle,et al.  Low simulated radiation limit for runaway greenhouse climates , 2013 .

[98]  H. J. Hoeijmakers,et al.  A search for TiO in the optical high-resolution transmission spectrum of HD 209458b: Hindrance due to inaccuracies in the line database , 2014, 1411.6017.

[99]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[100]  W. R. Thompson,et al.  The organic aerosols of Titan. , 1984, Advances in space research : the official journal of the Committee on Space Research.

[101]  Simon Albrecht,et al.  Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b , 2013, 1304.4014.

[102]  Antonin Bouchez,et al.  Giant Magellan Telescope: overview , 2012, Other Conferences.

[103]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[104]  H. Imanaka,et al.  EUV photochemical production of unsaturated hydrocarbons: implications to EUV photochemistry in Titan and Jovian planets. , 2009, The journal of physical chemistry. A.

[105]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[106]  R. Hanson,et al.  Ultraviolet absorption cross-sections of hot carbon dioxide , 2004 .

[107]  Victoria Meadows,et al.  Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. , 2013, Astrobiology.

[108]  Sara Seager,et al.  On the Insignificance of Photochemical Hydrocarbon Aerosols in the Atmospheres of Close-in Extrasolar Giant Planets , 2004 .

[109]  Robert R. Gamache,et al.  CO2-broadening of water-vapor lines , 1995 .

[110]  J. Kasting,et al.  Greenhouse warming by CH4 in the atmosphere of early Earth. , 2000, Journal of geophysical research.

[111]  E. Lellouch,et al.  A model of Triton's atmosphere and ionosphere , 1992 .

[112]  Geoffrey A. Blake,et al.  NEAR-IR DIRECT DETECTION OF WATER VAPOR IN TAU BOÖTIS b , 2014 .

[113]  Jacob L. Bean,et al.  THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA , 2014, 1410.2382.