Local isoperimetric inequalities in metric measure spaces verifying measure contraction property

We prove that on an essentially non-branching MCP(K,N) space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants. 2020 Mathematics Subject Classification: 53C23, 51Fxx.

[1]  Davide Barilari,et al.  Sub-Riemannian interpolation inequalities , 2017, Inventiones mathematicae.

[2]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[3]  F. Cavalletti,et al.  Monge problem in metric measure spaces with Riemannian curvature-dimension condition , 2013, 1310.4036.

[4]  C. Villani Optimal Transport: Old and New , 2008 .

[5]  A. Mondino,et al.  Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.

[6]  I. Zelenko,et al.  Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds , 2013, Discrete and Continuous Dynamical Systems.

[7]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[8]  A. Mondino,et al.  Almost euclidean Isoperimetric Inequalities in spaces satisfying local Ricci curvature lower bounds. , 2017, 1703.02119.

[9]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[10]  P. Bérard,et al.  Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov , 1985 .

[11]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[12]  Simone Di Marino,et al.  Perimeter as relaxed Minkowski content in metric measure spaces , 2016, 1603.08412.

[13]  Existence and uniqueness of optimal transport maps , 2013, 1301.1782.

[14]  Emanuel Milman,et al.  The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.

[15]  F. Cavalletti,et al.  Isoperimetric inequality under Measure-Contraction property , 2018, Journal of Functional Analysis.

[16]  A. Mondino,et al.  Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds , 2016, Rendiconti Lincei - Matematica e Applicazioni.

[17]  S. Bianchini,et al.  On the extremality, uniqueness and optimality of transference plans , 2009 .

[18]  A. Mondino,et al.  Optimal maps in essentially non-branching spaces , 2016, 1609.00782.

[19]  Dirk Helbing,et al.  Modelling and Optimisation of Flows on Networks , 2013 .

[20]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[21]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[22]  Sharp measure contraction property for generalized H-type Carnot groups , 2017, Communications in Contemporary Mathematics.

[23]  C. Croke An eigenvalue pinching theorem , 1982 .

[24]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[25]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[26]  A. Mondino,et al.  New formulas for the Laplacian of distance functions and applications , 2018, Analysis & PDE.

[27]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[28]  J. Metzger,et al.  Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions , 2012, Inventiones mathematicae.

[29]  B. Han The sharp $p$-Poincaré inequality under the measure contraction property , 2019, 1905.11980.

[30]  S. Bianchini,et al.  The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.

[31]  Emanuel Milman Sharp Isoperimetric Inequalities and Model Spaces for Curvature-Dimension-Diameter Condition , 2011 .

[32]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[33]  J. K. Hunter,et al.  Measure Theory , 2007 .

[34]  M. Gromov,et al.  Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces , 1987 .

[35]  Karl-Theodor Sturm,et al.  Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.

[36]  N. Juillet Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .