Local isoperimetric inequalities in metric measure spaces verifying measure contraction property
暂无分享,去创建一个
[1] Davide Barilari,et al. Sub-Riemannian interpolation inequalities , 2017, Inventiones mathematicae.
[2] Gershon Wolansky,et al. Optimal Transport , 2021 .
[3] F. Cavalletti,et al. Monge problem in metric measure spaces with Riemannian curvature-dimension condition , 2013, 1310.4036.
[4] C. Villani. Optimal Transport: Old and New , 2008 .
[5] A. Mondino,et al. Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.
[6] I. Zelenko,et al. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds , 2013, Discrete and Continuous Dynamical Systems.
[7] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[8] A. Mondino,et al. Almost euclidean Isoperimetric Inequalities in spaces satisfying local Ricci curvature lower bounds. , 2017, 1703.02119.
[9] Shin-ichi Ohta. On the measure contraction property of metric measure spaces , 2007 .
[10] P. Bérard,et al. Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov , 1985 .
[11] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[12] Simone Di Marino,et al. Perimeter as relaxed Minkowski content in metric measure spaces , 2016, 1603.08412.
[13] Existence and uniqueness of optimal transport maps , 2013, 1301.1782.
[14] Emanuel Milman,et al. The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.
[15] F. Cavalletti,et al. Isoperimetric inequality under Measure-Contraction property , 2018, Journal of Functional Analysis.
[16] A. Mondino,et al. Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds , 2016, Rendiconti Lincei - Matematica e Applicazioni.
[17] S. Bianchini,et al. On the extremality, uniqueness and optimality of transference plans , 2009 .
[18] A. Mondino,et al. Optimal maps in essentially non-branching spaces , 2016, 1609.00782.
[19] Dirk Helbing,et al. Modelling and Optimisation of Flows on Networks , 2013 .
[20] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[21] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[22] Sharp measure contraction property for generalized H-type Carnot groups , 2017, Communications in Contemporary Mathematics.
[23] C. Croke. An eigenvalue pinching theorem , 1982 .
[24] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[25] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[26] A. Mondino,et al. New formulas for the Laplacian of distance functions and applications , 2018, Analysis & PDE.
[27] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[28] J. Metzger,et al. Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions , 2012, Inventiones mathematicae.
[29] B. Han. The sharp $p$-Poincaré inequality under the measure contraction property , 2019, 1905.11980.
[30] S. Bianchini,et al. The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.
[31] Emanuel Milman. Sharp Isoperimetric Inequalities and Model Spaces for Curvature-Dimension-Diameter Condition , 2011 .
[32] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[33] J. K. Hunter,et al. Measure Theory , 2007 .
[34] M. Gromov,et al. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces , 1987 .
[35] Karl-Theodor Sturm,et al. Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.
[36] N. Juillet. Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .