On the Rate of Quantum Ergodicity in Euclidean Billiards

For a large class of quantized ergodic ows the quantum ergodicity theorem due to Shnirelman, Zelditch, Colin de Verdi ere and others states that almost all eigenfunctions become equidistributed in the semiclassical limit. In this work we rst give a short introduction to the formulation of the quantum ergodicity theorem for general observables in terms of pseudodiierential operators and show that it is equivalent to the semiclassical eigenfunction hypothesis for the Wigner function in the case of ergodic systems. Of great importance is the rate by which the quantum mechanical expectation values of an observable tend to their mean value. This is studied numerically for three Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000 eigenfunctions. We nd that in connguration space the rate of quantum ergodicity is strongly innuenced by localized eigenfunctions like bouncing ball modes or scarred eigenfunctions. We give a detailed discussion and explanation of these eeects using a simple but powerful model. For the rate of quantum ergodicity in momentum space we observe a slower decay. We also study the suitably normalized uctuations of the expectation values around their mean, and nd good agreement with a Gaussian distribution. y

[1]  S. Zelditch On the rate of quantum ergodicity I: Upper bounds , 1994 .

[2]  Steiner,et al.  Spectral statistics in the quantized cardioid billiard. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Marko Robnik,et al.  Energy level statistics in the transition region between integrability and chaos , 1993 .

[4]  S. Zelditch Quantum transition amplitudes for ergodic and for completely integrable systems , 1990 .

[5]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[7]  N. Chernov,et al.  Nonuniformly hyperbolic K-systems are Bernoulli , 1996, Ergodic Theory and Dynamical Systems.

[8]  H. Walther,et al.  Dynamics reported : expositions in dynamical systems : new series , 1992 .

[9]  Fishman,et al.  Approach to ergodicity in quantum wave functions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  R. Artuso,et al.  On the decay of correlations in Sinai billiards with infinite horizon , 1996, chao-dyn/9601013.

[11]  D. Jakobson Equidistribution of cusp forms on PSL2(Z)\PSL2(R) , 1997 .

[12]  A. Shnirelman Addendum On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motion , 1993 .

[13]  Generating Partitions for Two-dimensional Hyperbolic Maps , 1997 .

[14]  H. R. Dullin,et al.  Symbolic Dynamics and Periodic Orbits for the Cardioid Billiard , 1995 .

[15]  Leonid A. Bunimovich,et al.  On ergodic properties of certain billiards , 1974 .

[16]  R. Markarian New ergodic billiards: exact results , 1993 .

[17]  L. Bunimovich On the ergodic properties of nowhere dispersing billiards , 1979 .

[18]  S. Zelditch Quantum ergodicity on the sphere , 1992 .

[19]  B. Helffer,et al.  Ergodicité et limite semi-classique , 1987 .

[20]  R. Aurich,et al.  Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .

[21]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[22]  Marko Robnik,et al.  Classical dynamics of a family of billiards with analytic boundaries , 1983 .

[23]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[24]  Marko Robnik,et al.  Quantising a generic family of billiards with analytic boundaries , 1984 .

[25]  Eric Leichtnam,et al.  Ergodic properties of eigenfunctions for the Dirichlet problem , 1993 .

[26]  Edge diffraction, trace formulae and the cardioid billiard , 1995, chao-dyn/9509005.

[27]  R. Riddell Boundary-distribution solution of the Helmholtz equation for a region with corners , 1979 .

[28]  Quantum ergodicity of Eigenfunctions on PSL2(Z)/H2 , 1995 .

[29]  M. Berry,et al.  Diabolical points in the spectra of triangles , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Domokos Szász On theK-property of some planar hyperbolic billiards , 1992 .

[31]  Urs Kirchgraber,et al.  Dynamics Reported : Expositions in Dynamical Systems , 1994 .

[32]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[33]  M. Sieber,et al.  Quantum chaos in the hyperbola billiard , 1990 .

[34]  Michael V Berry,et al.  Statistics of energy levels without time-reversal symmetry: Aharonov-Bohm chaotic billiards , 1986 .

[35]  S. Zelditch,et al.  Ergodicity of eigenfunctions for ergodic billiards , 1996 .

[36]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[37]  R. Aurich,et al.  On the rate of quantum ergodicity on hyperbolic surfaces and for billiards , 1997, chao-dyn/9707016.

[38]  R. Schubertz,et al.  On the Number of Bouncing Ball Modes in Billiards , 1997 .

[39]  Kaufman,et al.  Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. , 1988, Physical review. A, General physics.

[40]  Maciej P. Wojtkowski,et al.  Principles for the design of billiards with nonvanishing Lyapunov exponents , 1986, Hamiltonian Dynamical Systems.

[41]  D. Robert Autour de l'approximation semi-classique , 1987 .

[42]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[43]  M. Saraceno,et al.  QUANTITATIVE STUDY OF SCARS IN THE BOUNDARY SECTION OF THE STADIUM BILLIARD , 1997, chao-dyn/9706024.

[44]  Allan N. Kaufman,et al.  Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories , 1979 .

[45]  F. Steiner,et al.  Mode Uctuations as Ngerprint of Chaotic and Non-chaotic Systems , 1996 .

[46]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[47]  D. Jakobson Quantum unique ergodicity for Eisenstein series on PSL2(Z)\PSL2(R , 1994 .

[48]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[49]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[50]  S. Zelditch,et al.  Classical Limits of Eigenfunctions for Some Completely Integrable Systems , 1999 .

[51]  A. Voros Semi-classical approximations , 1976 .

[52]  Gregor Tanner,et al.  How chaotic is the stadium billiard? A semiclassical analysis , 1996, chao-dyn/9610013.