Computational model considering effects of process and experimental verification of compressive strength of the X-cor sandwich

In order to increase the through-thickness compressive strength, pultruded carbon fiber pins are inserted into the ploymethacrylimide core of the sandwich, and then the X-cor sandwich is obtained. During curing process of the X-cor sandwich the forming of the residual stress is described in detail, the analytical results are that carbon fiber Z-pins preserve residually tensile stress in the end. Considering the effects of the residual stress Z-pins are treated as beams upon an elastic foundation, then a sort of compressive strength computational model of the X-cor sandwich is proposed and the compressive strength is computed. The X-cor sandwich samples of different density, diameter and angle of Z-pins are made for compressive strength experiments. Through the contrast between experimental and computational results the computational model is verified. As Z-pin's diameter and density increase the residual stress increase. While as Z-pin's angle increases the residual stress decrease.