Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics

Single-shot real-time characterization of optical waveforms with sub-picosecond resolution is essential for investigating various ultrafast optical dynamics. However, the finite temporal recording length of current techniques hinders comprehensive understanding of many intriguing ultrafast optical phenomena that evolve over a timescale much longer than their fine temporal details. Inspired by the space-time duality and by stitching of multiple microscopic images to achieve a larger field of view in the spatial domain, here a panoramic-reconstruction temporal imaging (PARTI) system is devised to scale up the temporal recording length without sacrificing the resolution. As a proof-of-concept demonstration, the PARTI system is applied to study the dynamic waveforms of slowly evolved dissipative Kerr solitons in an ultrahigh-Q microresonator. Two 1.5-ns-long comprehensive evolution portraits are reconstructed with 740 fs resolution and dissipative Kerr soliton transition dynamics, in which a multiplet soliton state evolves into a stable singlet soliton state, are depicted.Real-time characterization of ultrafast dynamics comes with a tradeoff between temporal resolution and recording length. Here, Li et al. use a temporal reconstruction technique inspired by panoramic microscopy to image the dynamics of slowly evolved dissipative Kerr solitons in a microresonator.

[1]  L. Lagae,et al.  All-optical probe of coherent spin waves. , 2002, Physical review letters.

[2]  Guifang Li Recent advances in coherent optical communication , 2009 .

[3]  K.A. Remley,et al.  The Sampling Oscilloscope as a Microwave Instrument , 2007, IEEE Microwave Magazine.

[4]  B. Kolner,et al.  Principles of parametric temporal imaging. I. System configurations , 2000, IEEE Journal of Quantum Electronics.

[6]  José Azaña,et al.  Real-time complex temporal response measurements of ultrahigh-speed optical modulators. , 2009, Optics express.

[7]  B. Kolner Active pulse compression using an integrated electro-optic phase modulator , 1988 .

[8]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[9]  I. Walmsley,et al.  Characterization of ultrashort electromagnetic pulses , 2009 .

[10]  Yoshitomo Okawachi,et al.  Route to stabilized ultrabroadband microresonator-based frequency combs. , 2013, Optics letters.

[11]  J. Fujimoto,et al.  Femtosecond optical ranging in biological systems. , 1986, Optics letters.

[12]  Linjie Zhou,et al.  Real-time full-field arbitrary optical waveform measurement , 2010 .

[13]  Jie Sun,et al.  Photonic ADC: overcoming the bottleneck of electronic jitter. , 2012, Optics express.

[14]  J. Soto-Crespo,et al.  Experimental evidence for soliton explosions. , 2002, Physical review letters.

[15]  C. Dorrer,et al.  High-speed measurements for optical telecommunication systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Neil G. R. Broderick,et al.  Observation of soliton explosions in a passively mode-locked fiber laser , 2014, 1409.8373.

[17]  Chi Zhang,et al.  109  MHz optical tomography using temporal magnification. , 2015, Optics letters.

[18]  Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region. , 2015, Optics express.

[19]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[20]  K. Qiu,et al.  Stability and Intrinsic Fluctuations of Dissipative Cavity Solitons in Kerr Frequency Microcombs , 2015, IEEE Photonics Journal.

[21]  D. Kane,et al.  Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. , 1993, Optics letters.

[22]  R. Morandotti,et al.  Time-Lens Measurement of Subpicosecond Optical Pulses in CMOS Compatible High-Index Glass Waveguides , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  N. S. Bergano,et al.  Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers , 1995 .

[24]  José Azaña,et al.  Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry. , 2010, Optics express.

[25]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[26]  R. Scott,et al.  Temporal magnification and reversal of 100 Gb/s optical data with an up‐conversion time microscope , 1994 .

[27]  S. Turitsyn,et al.  Mode-locking via dissipative Faraday instability , 2016, Nature Communications.

[28]  M. Duguay,et al.  Compression of optical pulses , 1968 .

[29]  A. Matsko,et al.  Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. , 2015, Physical review letters.

[30]  Optical turbulence and spectral condensate in long-fiber lasers , 2009 .

[31]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[32]  R. Trebino,et al.  Phase and intensity characterization of femtosecond pulses from a chirped-pulse amplifier by frequency-resolved optical gating. , 1995, Optics letters.

[33]  G. Plows,et al.  Stroboscopic scanning electron microscopy. , 1968, Journal of scientific instruments.

[34]  K. Vahala,et al.  Phase-coherent microwave-to-optical link with a self-referenced microcomb , 2016, Nature Photonics.

[35]  Chi Zhang,et al.  Ultrafast Spectroscopy Based on Temporal Focusing and Its Applications , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Reza Salem,et al.  Application of space–time duality to ultrahigh-speed optical signal processing , 2013 .

[37]  P. C. Chui,et al.  Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation , 2013, Scientific Reports.

[38]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[39]  S. Sugavanam,et al.  The laminar–turbulent transition in a fibre laser , 2013, Nature Photonics.

[40]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[41]  D. Kwong,et al.  A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz , 2015, Scientific Reports.

[42]  Roberto Morandotti,et al.  Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability , 2016, Nature Communications.

[43]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[44]  David M. Bloom,et al.  Applications of time lens optical systems , 1993 .

[45]  Michal Lipson,et al.  Temporal-imaging system with simple external-clock triggering. , 2010, Optics express.

[46]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[47]  Feng He,et al.  Use of Autostitch for automatic stitching of microscope images. , 2007, Micron.

[48]  B. Jalali,et al.  Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena , 2009, Nature.

[49]  Wolfgang Freude,et al.  Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. , 2015, Physical review letters.

[50]  C. Dorrer,et al.  Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. , 1999, Optics letters.

[51]  P. Petropoulos,et al.  Compensation of Linear Distortions by Using XPM With Parabolic Pulses as a Time Lens , 2008, IEEE Photonics Technology Letters.

[52]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[53]  Hailong Zhou,et al.  Double-Slit and Square-Slit Interferences With Surface Plasmon Polaritons Modulated by Orbital Angular Momentum Beams , 2015, IEEE Photonics Journal.

[54]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[55]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[56]  R. Langenhorst,et al.  Fiber loop optical buffer , 1996 .

[57]  Dim-Lee Kwong,et al.  A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty , 2016, Science Advances.

[58]  Alain Jolly,et al.  Static and synchronized switching noise management of replicated optical pulse trains , 2006 .

[59]  Multi-stability and super cavity solitons in microresonator frequency combs , 2015 .

[60]  Chi Zhang,et al.  Observing the spectral dynamics of a mode-locked laser with ultrafast parametric spectro-temporal analyzer , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[61]  Pierre Suret,et al.  Single-shot observation of optical rogue waves in integrable turbulence using time microscopy , 2016, Nature communications.

[62]  Bahram Jalali,et al.  Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate , 2016, Nature Photonics.

[63]  Masataka Nakazawa,et al.  All-Optical 40-GHz Time-Domain Fourier Transformation Using XPM With a Dark Parabolic Pulse , 2008, IEEE Photonics Technology Letters.

[64]  C. V. Bennett,et al.  Aberrations in temporal imaging , 2001 .

[65]  T. Hansson,et al.  Frequency comb generation beyond the Lugiato–Lefever equation: multi-stability and super cavity solitons , 2015, 1503.03274.

[66]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[67]  Michal Lipson,et al.  High-speed optical sampling using a silicon-chip temporal magnifier. , 2009, Optics express.