Empirical Likelihood for Estimating Equations with Nonignorably Missing Data.

We develop an empirical likelihood (EL) inference on parameters in generalized estimating equations with nonignorably missing response data. We consider an exponential tilting model for the nonignorably missing mechanism, and propose modified estimating equations by imputing missing data through a kernel regression method. We establish some asymptotic properties of the EL estimators of the unknown parameters under different scenarios. With the use of auxiliary information, the EL estimators are statistically more efficient. Simulation studies are used to assess the finite sample performance of our proposed EL estimators. We apply our EL estimators to investigate a data set on earnings obtained from the New York Social Indicators Survey.

[1]  Joseph G. Ibrahim,et al.  Missing data methods in longitudinal studies: a review , 2009 .

[2]  A B Troxel,et al.  Weighted estimating equations with nonignorably missing response data. , 1997, Biometrics.

[3]  Hongtu Zhu,et al.  Diagnostic measures for empirical likelihood of general estimating equations , 2008 .

[4]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[5]  Jae Kwang Kim,et al.  A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data , 2011 .

[6]  W. Newey,et al.  HIGHER ORDER PROPERTIES OF GMM AND GENERALIZED , 2004 .

[7]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[8]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[9]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[10]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[11]  Joseph G. Ibrahim,et al.  A Weighted Estimating Equation for Missing Covariate Data with Properties Similar to Maximum Likelihood , 1999 .

[12]  S. Lipsitz,et al.  Missing-Data Methods for Generalized Linear Models , 2005 .

[13]  Ma Hopkins,et al.  Missing Data Methods , 2015 .

[14]  Biao Zhang,et al.  Empirical Likelihood in Missing Data Problems , 2009 .

[15]  Alan T. K. Wan,et al.  Estimating Equations Inference With Missing Data , 2008 .

[16]  Raymond J. Carroll,et al.  A Semiparametric Correction for Attenuation , 1994 .

[17]  Dong Wang,et al.  EMPIRICAL LIKELIHOOD FOR ESTIMATING EQUATIONS WITH MISSING VALUES , 2009, 0903.0726.

[18]  Anna Clara Monti Empirical likelihood confidence regions in time series models , 1997 .

[19]  J. N. K. Rao,et al.  Empirical likelihood-based inference under imputation for missing response data , 2002 .