Review of BisoNet Abstraction Techniques

BisoNets represent relations of information items as networks. The goal of BisoNet abstraction is to transform a large BisoNet into a smaller one which is simpler and easier to use, although some information may be lost in the abstraction process. An abstracted BisoNet can help users to see the structure of a large BisoNet, or understand connections between distant nodes, or discover hidden knowledge. In this paper we review different approaches and techniques to abstract a large BisoNet. We classify the approaches into two groups: preference-free methods and preference-dependent methods.

[1]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[2]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[3]  Z W Birnbaum,et al.  ON THE IMPORTANCE OF DIFFERENT COMPONENTS IN A MULTICOMPONENT SYSTEM , 1968 .

[4]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[5]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[6]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[7]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[8]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[9]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[10]  Godfried T. Toussaint,et al.  The relative neighbourhood graph of a finite planar set , 1980, Pattern Recognit..

[11]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[12]  Shahid H. Bokhari,et al.  A Partitioning Strategy for Nonuniform Problems on Multiprocessors , 1987, IEEE Transactions on Computers.

[13]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[14]  M. Zelen,et al.  Rethinking centrality: Methods and examples☆ , 1989 .

[15]  Noah E. Friedkin,et al.  Theoretical Foundations for Centrality Measures , 1991, American Journal of Sociology.

[16]  John Scott Social Network Analysis , 1988 .

[17]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[18]  C. Lie,et al.  Joint reliability-importance of two edges in an undirected network , 1993 .

[19]  M. Stoer Design of Survivable Networks , 1993 .

[20]  Lawrence B. Holder,et al.  Substructure Discovery Using Minimum Description Length and Background Knowledge , 1993, J. Artif. Intell. Res..

[21]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[22]  R. Agarwal Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[23]  Lawrence B. Holder,et al.  Substucture Discovery in the SUBDUE System , 1994, KDD Workshop.

[24]  R. Diekmann,et al.  Using helpful sets to improve graph bisections , 1994, Interconnection Networks and Mapping and Scheduling Parallel Computations.

[25]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[26]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[27]  Arnold L. Rosenberg,et al.  Interconnection Networks and Mapping and Scheduling Parallel Computations: Dimacs Workshop, February 7-9, 1994 , 1995 .

[28]  Hiroshi Motoda,et al.  CLIP: Concept Learning from Inference Patterns , 1995, Artif. Intell..

[29]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[30]  Hannu Toivonen,et al.  Finding Frequent Substructures in Chemical Compounds , 1998, KDD.

[31]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[32]  S. Vavasis,et al.  Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..

[33]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[34]  M. KleinbergJon Authoritative sources in a hyperlinked environment , 1999 .

[35]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[36]  Takashi Washio,et al.  An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data , 2000, PKDD.

[37]  George Karypis,et al.  Frequent subgraph discovery , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[38]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[39]  Jan Komorowski,et al.  Principles of Data Mining and Knowledge Discovery , 2001, Lecture Notes in Computer Science.

[40]  Gabriel Valiente,et al.  A graph distance metric combining maximum common subgraph and minimum common supergraph , 2001, Pattern Recognit. Lett..

[41]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Dennis Shasha,et al.  Algorithmics and applications of tree and graph searching , 2002, PODS.

[43]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[44]  Wei Zhang,et al.  Improvement of HITS-based algorithms on web documents , 2002, WWW '02.

[45]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[46]  Jiawei Han,et al.  CloseGraph: mining closed frequent graph patterns , 2003, KDD '03.

[47]  Fang Wu,et al.  Finding communities in linear time: a physics approach , 2003, ArXiv.

[48]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[49]  Padhraic Smyth,et al.  Algorithms for estimating relative importance in networks , 2003, KDD '03.

[50]  Shou-De Lin,et al.  Unsupervised link discovery in multi-relational data via rarity analysis , 2003, Third IEEE International Conference on Data Mining.

[51]  Philip S. Yu,et al.  Graph indexing: a frequent structure-based approach , 2004, SIGMOD '04.

[52]  Jiong Yang,et al.  SPIN: mining maximal frequent subgraphs from graph databases , 2004, KDD.

[53]  George Karypis,et al.  An efficient algorithm for discovering frequent subgraphs , 2004, IEEE Transactions on Knowledge and Data Engineering.

[54]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[56]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Christos Faloutsos,et al.  Fast discovery of connection subgraphs , 2004, KDD.

[59]  Martin Everett,et al.  Ego network betweenness , 2005, Soc. Networks.

[60]  Dániel Fogaras,et al.  Towards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and Experiments , 2005, Internet Math..

[61]  Ulrich Elsner,et al.  Graph partitioning - a survey , 2005 .

[62]  Amit P. Sheth,et al.  Discovering informative connection subgraphs in multi-relational graphs , 2005, SKDD.

[63]  Philip S. Yu,et al.  Substructure similarity search in graph databases , 2005, SIGMOD '05.

[64]  George Karypis,et al.  Finding Frequent Patterns in a Large Sparse Graph* , 2005, Data Mining and Knowledge Discovery.

[65]  Christos Faloutsos,et al.  Center-piece subgraphs: problem definition and fast solutions , 2006, KDD '06.

[66]  Ambuj K. Singh,et al.  Closure-Tree: An Index Structure for Graph Queries , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[67]  Hannu Toivonen,et al.  Link Discovery in Graphs Derived from Biological Databases , 2006, DILS.

[68]  Philip S. Yu,et al.  Searching Substructures with Superimposed Distance , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[69]  Panos M. Pardalos,et al.  Design of survivable networks , 2006 .

[70]  Luc De Raedt,et al.  Compressing probabilistic Prolog programs , 2007, Machine Learning.

[71]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[72]  Jignesh M. Patel,et al.  SAGA: a subgraph matching tool for biological graphs , 2007, Bioinform..

[73]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[74]  Christian Borgelt,et al.  Subgraph Support in a Single Large Graph , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[75]  Wei Wang,et al.  Graph Database Indexing Using Structured Graph Decomposition , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[76]  Christian Borgelt,et al.  Support Computation for Mining Frequent Subgraphs in a Single Graph , 2007, MLG.

[77]  Siegfried Nijssen,et al.  What Is Frequent in a Single Graph? , 2007, PAKDD.

[78]  Jignesh M. Patel,et al.  TALE: A Tool for Approximate Large Graph Matching , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[79]  Hannu Toivonen,et al.  Finding reliable subgraphs from large probabilistic graphs , 2008, Data Mining and Knowledge Discovery.

[80]  Fang Zhou,et al.  Review of network abstraction techniques , 2009 .

[81]  Michael R. Berthold Bisociative Knowledge Discovery , 2011, IDA.

[82]  Tobias Kötter,et al.  Towards Creative Information Exploration Based on Koestler's Concept of Bisociation , 2012, Bisociative Knowledge Discovery.