Despite the recent progresses in occupant safety, protection of children is not still optimal. To offer a better understanding of child injury mechanisms, the present study proposes a human-like finite element model of a 3-year-old child neck. The subject underwent scanning. The images were first segmented semi-automatically in order to extract the soft tissues and the bones. In the second step, we separated the different bones slice by slice on the geometry previously reconstructed. The anatomic structures were identified and each vertebra was reconstructed independently with special attention to the articular process. In the third step, we generated an original meshing on the previous geometry to obtain a finite element model of the child’s neck. The modelled anatomical structures are the head, the seven cervical vertebrae (C1–C7), the first thoracic vertebra (T1), the intervertebral discs and the principal ligaments which were modelled using non-linear shock-absorbing spring elements. The stiffness values used were taken from the literature, and scaled down using scale factors from Irwin. This model incorporates 7,340 shell elements to model the 8 vertebrae, the head and 1,068 solid 8-node elements to model the intervertebral discs. Contact between the articular surfaces is represented by interfaces permitting frictionless movement. Since this study does not aim to reproduce bone fractures, we have modelled the cervical vertebrae as rigid bodies. Given that validation data was not available, the model validation was conduced against crash test dummy component sled tests. The accelerometric responses of the head model were similar with those recorded experimentally with a Q3 dummy neck in backward, frontal and lateral impact direction.RésuméMalgré l’évolution récente des systèmes de protection dans les automobiles, les traumatismes du rachis cervical de l’enfant restent encore un problème d’actualité. Le sujet de cette étude est donc la création et la validation d’un modèle éléments finis tridimensionnel détaillé du rachis cervical d’un enfant de trois ans, destiné à améliorer la compréhension des mécanismes lésionnels en situation de choc. Pour ce faire, nous sommes partis de coupes scanographiques; les images ont d’abord été seuillées de manière semi-automatique pour extraire les parties osseuses. Les vertèbres ont été identifiées coupes par coupes sur la base de la géométrie ainsi reconstruite. Dans un second temps, à partir de la géométrie obtenue, nous avons généré un maillage original comprenant le crâne, les sept vertèbres cervicales, la première vertèbre thoracique, les disques intervertébraux et les principaux ligaments. Les huit vertèbres ainsi que le crâne ont été modélisés par des éléments coques, les disques intervertébraux par des éléments volumiques et les ligaments par des éléments ressorts. Les éléments osseux se sont vus déclarés en tant que corps rigides puisque l’étude ne prend pas en compte la rupture osseuse. Les ligaments ont été modélisés par des ressorts viscoélastiques non-linéaires dont les valeurs de raideur sont issues de la littérature et ont été ajustés selon les coefficients d’échelle de Irwin. Le contact entre les surfaces articulaires est géré par des interfaces sans frottement. Du fait de l’absence de données expérimentales sur le comportement de l’enfant en situation d’impact, nous avons mené des essais chariots sur le cou d’un mannequin de crash Q3. Les réponses numériques de la tête en terme d’accélération étaient similaires à celles mesurées expérimentalement en choc avant, arrière et latéral.
[1]
G. D. Driscoll,et al.
RESPONSES OF ANIMALS EXPOSED TO DEPLOYMENT OF VARIOUS PASSENGER INFLATABLE RESTRAINT SYSTEM CONCEPTS FOR A VARIETY OF COLLISION SEVERITIES AND ANIMAL POSITIONS. SAE PT-31, PASSENGER CAR INFLATABLE RESTRAINT SYSTEMS: A COMPENDIUM OF PUBLISHED SAFETY RESEARCH
,
1982
.
[2]
Koji Mizuno,et al.
Development of Three-Year-Old Child Human FE Model
,
2004
.
[3]
F. Meyer,et al.
The importance of modal validation for biomechanical models, demonstrated by application to the cervical spine
,
2004
.
[4]
Harold J. Mertz,et al.
Biomechanical basis for the CRABI and Hybrid III child dummies
,
1997
.
[5]
L. M. Patrick,et al.
RESPONSE OF THE HUMAN NECK IN FLEXION, EXTENSION AND LATERAL FLEXION
,
1976
.
[6]
Roger P. Daniel,et al.
A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration
,
1984
.
[7]
Golinski Wz.
Three-dimensional dynamic modelling of the human cervical spine in whiplash situations.
,
2000
.
[8]
W Goldsmith,et al.
Response of a human head/neck/upper-torso replica to dynamic loading--II. Analytical/numerical model.
,
1987,
Journal of biomechanics.
[9]
H Delingette,et al.
Geometric and physical representations for a simulator of hepatic surgery.
,
1996,
Studies in health technology and informatics.
[10]
J. Currey,et al.
The mechanical properties of bone tissue in children.
,
1975,
The Journal of bone and joint surgery. American volume.
[11]
N Yoganandan,et al.
Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling.
,
2001,
Clinical biomechanics.
[12]
N Yoganandan,et al.
Finite element modeling of the C4-C6 cervical spine unit.
,
1996,
Medical engineering & physics.
[13]
N Yoganandan,et al.
Finite element model of the human lower cervical spine: parametric analysis of the C4-C6 unit.
,
1997,
Journal of biomechanical engineering.
[14]
M Guillot,et al.
Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction.
,
1985,
Journal of biomechanics.
[15]
Frank A. Pintar,et al.
AGE-SPECIFIC PEDIATRIC CERVICAL SPINE BIOMECHANICAL RESPONSES: THREE-DIMENSIONAL NONLINEAR FINITE ELEMENT MODELS
,
1997
.
[16]
Marc C. Beusenberg,et al.
Biomechanically Based Design and Performance Targets for a 3-Year Old Child Crash Dummy for Frontal and Side Impact
,
1997
.
[17]
Nicholas Ayache,et al.
Medical computer vision, virtual reality and robotics
,
1995,
Image Vis. Comput..
[18]
Demetri Terzopoulos,et al.
Snakes: Active contour models
,
2004,
International Journal of Computer Vision.
[19]
Rolf H. Eppinger,et al.
Pediatric and small female neck injury scale factors and tolerance based on human spine biomechanical characteristics
,
2000
.
[20]
L. M. Patrick,et al.
Strength and response of the human neck
,
1971
.
[21]
A. Sances,et al.
Tensile Strength of Spinal Ligaments
,
1988,
Spine.
[22]
Johan Montagnat,et al.
Fully Automatic Anatomical, Pathological, and Functional Segmentation from CT Scans for Hepatic Surgery
,
2000,
Medical Imaging: Image Processing.