A general protocol for the crystallization of membrane proteins for X-ray structural investigation

Protein crystallography is used to generate atomic resolution structures of protein molecules. These structures provide information about biological function, mechanism and interaction of a protein with substrates or effectors including DNA, RNA, cofactors or other small molecules, ions and other proteins. This technique can be applied to membrane proteins resident in the membranes of cells. To accomplish this, membrane proteins first need to be either heterologously expressed or purified from a native source. The protein has to be extracted from the lipid membrane with a mild detergent and purified to a stable, homogeneous population that may then be crystallized. Protein crystals are then used for X-ray diffraction to yield atomic resolution structures of the desired membrane protein target. Below, we present a general protocol for the growth of diffraction quality membrane protein crystals. The process of protein crystallization is highly variable, and obtaining diffraction quality crystals can require weeks to months or even years in some cases.

[1]  J. Cregg,et al.  Recombinant protein expression in Pichia pastoris , 2000, Molecular biotechnology.

[2]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[3]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[4]  Jennifer L. Martin,et al.  Post-crystallization treatments for improving diffraction quality of protein crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[5]  Robert M Stroud,et al.  The channel architecture of aquaporin 0 at a 2.2-A resolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Roland Riek,et al.  NMR Structure of Mistic, a Membrane-Integrating Protein for Membrane Protein Expression , 2005, Science.

[7]  G. Hannig,et al.  Strategies for optimizing heterologous protein expression in Escherichia coli. , 1998, Trends in biotechnology.

[8]  Poul Nissen,et al.  Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  V. Dötsch,et al.  Large-scale production of functional membrane proteins , 2008, Cellular and Molecular Life Sciences.

[10]  M. Wiener,et al.  A pedestrian guide to membrane protein crystallization. , 2004, Methods.

[11]  J. Porath,et al.  Development of immobilized metal affinity chromatography. III: Interaction of oligopeptides with immobilized nickel iminodiacetate , 1985 .

[12]  K. Gawrisch,et al.  Expression of human peripheral cannabinoid receptor for structural studies , 2005, Protein science : a publication of the Protein Society.

[13]  Jilly F. Evans,et al.  Crystal Structure of Inhibitor-Bound Human 5-Lipoxygenase-Activating Protein , 2007, Science.

[14]  David I. Stuart,et al.  A procedure for setting up high-throughput nanolitre crystallization experiments. II. Crystallization results , 2003 .

[15]  Thomas E. Andreol [48] Planar lipid bilayer membranes , 1974 .

[16]  Stephen R Quake,et al.  A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. , 2006, Journal of the American Chemical Society.

[17]  H. Michel,et al.  Crystallization of membrane proteins. , 1983, Current opinion in structural biology.

[18]  J. Porath,et al.  Development of immobilized metal affinity chromatography : I. Comparison of two iminodiacetate gels , 1985 .

[19]  A. McPherson,et al.  Current approaches to macromolecular crystallization. , 1990, European journal of biochemistry.

[20]  Joseph D Ng,et al.  Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. , 2003, Journal of structural biology.

[21]  Eric Gouaux,et al.  Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. , 2007, Nature.

[22]  R. Gottlob,et al.  Methods and Results , 1986 .

[23]  A Nevzorov,et al.  Structure determination of membrane proteins by NMR spectroscopy. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[24]  R. Latorre,et al.  Ion-channel reconstitution. , 2007, Methods in molecular biology.

[25]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[26]  Philip J. Reeves,et al.  Structure and function in rhodopsin: A tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Rigaud,et al.  Reconstitution of membrane proteins into liposomes. , 2003, Methods in enzymology.

[28]  P. Loll,et al.  Strategies for crystallizing membrane proteins , 1996, Journal of bioenergetics and biomembranes.

[29]  R. Stroud,et al.  Cell‐free complements in vivo expression of the E. coli membrane proteome , 2007, Protein science : a publication of the Protein Society.

[30]  Robert M. Stroud,et al.  Mechanism of Ammonia Transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å , 2004, Science.

[31]  E. Campbell,et al.  Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel , 2005, Science.

[32]  J. Rosenbusch,et al.  Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[34]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[35]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[36]  Robert M Stroud,et al.  Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 Å , 2007, Proceedings of the National Academy of Sciences.

[37]  D. Bylund,et al.  Radioligand binding methods: practical guide and tips. , 1994, The American journal of physiology.

[38]  Martin Caffrey,et al.  Membrane protein crystallization. , 2003, Journal of structural biology.

[39]  J. Cregg,et al.  Heterologous protein expression in the methylotrophic yeast Pichia pastoris. , 2000, FEMS microbiology reviews.

[40]  D. Bylund,et al.  Radioligand binding methods for membrane preparations and intact cells. , 2011, Methods in molecular biology.

[41]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[42]  Sebastian Doniach,et al.  Small-angle X-ray scattering from RNA, proteins, and protein complexes. , 2007, Annual review of biophysics and biomolecular structure.

[43]  So Iwata,et al.  Rationalizing α‐helical membrane protein crystallization , 2008, Protein science : a publication of the Protein Society.

[44]  Roland Contreras,et al.  Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. K. Mohanty,et al.  Inhibition of tobacco etch virus protease activity by detergents. , 2003, Protein expression and purification.

[46]  J. Jenkins,et al.  The growth and characterization of membrane protein crystals , 1986 .

[47]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[48]  B. Wallace,et al.  Circular-dichroism analyses of membrane proteins: examination of environmental effects on bacteriorhodopsin spectra. , 1993, The Biochemical journal.

[49]  D. Fu,et al.  The structure of GlpF, a glycerol conducting channel. , 2002, Novartis Foundation symposium.

[50]  S. Quake,et al.  Microfluidics in structural biology: smaller, faster em leader better. , 2003, Current opinion in structural biology.

[51]  L. Miercke,et al.  Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum , 2008, Nature Structural &Molecular Biology.

[52]  R D Ricker,et al.  Fast, reproducible size-exclusion chromatography of biological macromolecules. , 1996, Journal of chromatography. A.

[53]  S. Quake,et al.  A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Quake,et al.  Microfluidics in structural biology: smaller, faster ... better , 2003 .

[55]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[56]  P. Nollert,et al.  Lipidic cubic phases as matrices for membrane protein crystallization. , 2004, Methods.

[57]  H. Michel,et al.  Crystallisation of membrane proteins mediated by antibody fragments. , 2002, Current opinion in structural biology.

[58]  C. Sanders,et al.  NMR assignments for a helical 40 kDa membrane protein. , 2004, Journal of the American Chemical Society.

[59]  P. Raman,et al.  The Membrane Protein Data Bank , 2005, Cellular and Molecular Life Sciences.

[60]  M. Potschka Universal calibration of gel permeation chromatography and determination of molecular shape in solution. , 1987, Analytical biochemistry.

[61]  B. Trathnigg Size Exclusion Chromatography of Polymers , 2003 .

[62]  A. McPherson,et al.  Searching for silver bullets: an alternative strategy for crystallizing macromolecules. , 2006, Journal of structural biology.

[63]  S. Opella,et al.  NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. , 2005, Biochemistry.

[64]  E. Snell,et al.  The development and application of a method to quantify the quality of cryoprotectant solutions using standard area-detector X-ray images , 2002 .

[65]  David I. Stuart,et al.  A procedure for setting up high-throughput nanolitre crystallization experiments. I. Protocol design and validation , 2003 .

[66]  L. Guan,et al.  Manipulating phospholipids for crystallization of membrane transport proteins , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Cadene,et al.  X-ray structure of a voltage-dependent K+ channel , 2003, Nature.

[68]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[69]  Marc S. Lewis,et al.  Modern analytical ultracentrifugation in protein science: A tutorial review , 2002, Protein science : a publication of the Protein Society.

[70]  Greg L. Hura,et al.  X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. , 2011, Quarterly reviews of biophysics.

[71]  W. Tanner,et al.  Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. , 2003, Biochimica et biophysica acta.

[72]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[73]  R. Garavito,et al.  Detergents as Tools in Membrane Biochemistry* , 2001, The Journal of Biological Chemistry.

[74]  Jonathan G. Lees,et al.  Analyses of circular dichroism spectra of membrane proteins , 2003, Protein science : a publication of the Protein Society.

[75]  So Iwata,et al.  Methods and Results in Crystallization of Membrane Proteins , 2003 .

[76]  Yi Wang,et al.  Structural mechanism of plant aquaporin gating , 2006, Nature.

[77]  Y. Weng,et al.  Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering. , 2004, Biophysical journal.

[78]  Robert M Stroud,et al.  Architecture and Selectivity in Aquaporins: 2.5 Å X-Ray Structure of Aquaporin Z , 2003, PLoS biology.

[79]  Peter Agre,et al.  Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Axel T Brunger,et al.  Refractive index‐based determination of detergent concentration and its application to the study of membrane proteins , 2005, Protein science : a publication of the Protein Society.

[81]  K. Williams,et al.  Determination of molecular masses of proteins in solution: Implementation of an HPLC size exclusion chromatography and laser light scattering service in a core laboratory. , 1999, Journal of biomolecular techniques : JBT.

[82]  P. Nissen,et al.  Crystal structure of the plasma membrane proton pump , 2008, Nature.

[83]  C. Sanders,et al.  Membrane protein preparation for TROSY NMR screening. , 2005, Methods in enzymology.

[84]  K. Weckström Aqueous micellar systems in membrane protein crystallization , 1985, FEBS letters.

[85]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[86]  B. Chait,et al.  Mass spectrometry as a tool for protein crystallography. , 2001, Annual review of biophysics and biomolecular structure.