Modular entanglement of atomic qubits using photons and phonons

Many quantum protocols require fast, remote entanglement generation to outperform their classical counterparts. A modular solution is now reported, using trapped ions that are remotely entangled through photons. Quantum entanglement is the central resource behind quantum information science, from quantum computation and simulation1,2 to enhanced metrology3 and secure communication1. These applications require the quantum control of large networks of qubits to realize gains and speed increases over conventional devices. However, propagating entanglement becomes difficult or impossible as the system grows in size. Here, we demonstrate the first step in a modular approach4 to scaling entanglement by using complementary quantum buses on a collection of three atomic ion qubits stored in two remote ion trap modules. Entanglement within a module is achieved with deterministic near-field interactions through phonons5, and remote entanglement between modules is achieved with a probabilistic interaction through photons6. This minimal system allows us to address generic issues in the synchronization of entanglement with multiple buses. It points the way towards a modular large-scale quantum information architecture that promises less spectral crowding and thus potentially less decoherence as the number of qubits increases4. We generate this modular entanglement faster than the observed remotely entangled qubit-decoherence rate, showing that entanglement can be scaled simply by adding more modules.

[1]  I. V. Inlek,et al.  Coherent error suppression in multiqubit entangling gates. , 2011, Physical review letters.

[2]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[3]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[4]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[5]  Christopher Monroe,et al.  Quantum Networks with Trapped Ions , 2007 .

[6]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[7]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[8]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[9]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[10]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[11]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[12]  David J. Wineland,et al.  Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic , 2003 .

[13]  P Grangier,et al.  Entanglement of two individual neutral atoms using Rydberg blockade. , 2009, Physical review letters.

[14]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.

[15]  J. Britton,et al.  Sympathetic cooling of 9 Be + and 24 Mg + for quantum logic , 2003 .

[16]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[17]  D. Matsukevich,et al.  Bell inequality violation with two remote atomic qubits. , 2008, Physical review letters.

[18]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[19]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[20]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[21]  L-M Duan,et al.  Phase control of trapped ion quantum gates , 2005 .

[22]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[23]  C. Simon,et al.  Robust long-distance entanglement and a loophole-free bell test with ions and photons. , 2003, Physical review letters.

[24]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[25]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[26]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[27]  I. V. Inlek,et al.  Quantum gates with phase stability over space and time , 2014 .

[28]  C. F. Roos,et al.  Precision spectroscopy with two correlated atoms , 2007 .

[29]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[30]  M M Fejer,et al.  Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters. , 2010, Optics letters.

[31]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[32]  Christian Nölleke,et al.  Efficient teleportation between remote single-atom quantum memories. , 2012, Physical review letters.

[33]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[34]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[35]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[36]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .