Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics

[1]  A. Zayats,et al.  Brillouin light scattering by spin waves in magnetic metamaterials based on Co nanorods , 2012 .

[2]  Yuri S. Kivshar,et al.  Microscopic model of Purcell enhancement in hyperbolic metamaterials , 2012, 1205.3955.

[3]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[4]  Igal Brener,et al.  Active tuning of mid-infrared metamaterials by electrical control of carrier densities. , 2012, Optics express.

[5]  Mikhail A. Noginov,et al.  Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial , 2011 .

[6]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[7]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[8]  Xiang Zhang,et al.  A carpet cloak for visible light. , 2011, Nano letters.

[9]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[10]  G. Wurtz,et al.  The controlled fabrication and geometry tunable optics of gold nanotube arrays , 2011, Nanotechnology.

[11]  Yuehui Lu,et al.  Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance. , 2010, Optics express.

[12]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[13]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[14]  H. Low,et al.  Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography. , 2010, ACS nano.

[15]  L. Viry,et al.  Engineering hybrid nanotube wires for high-power biofuel cells. , 2010, Nature communications.

[16]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[17]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[18]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[19]  G. Wurtz,et al.  Optical nonlocalities and additional waves in epsilon-near-zero metamaterials , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[20]  D. Losic,et al.  Ion-beam pore opening of porous anodic alumina: The formation of single nanopore and nanopore arrays , 2009 .

[21]  M. Betz,et al.  Ultrafast control of grating-assisted light coupling to surface plasmons. , 2008, Optics letters.

[22]  G. Wiederrecht,et al.  Ultrafast hybrid plasmonics , 2008 .

[23]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[24]  N. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008, 0807.2542.

[25]  Yuh‐Lin Wang,et al.  Focused‐Ion‐Beam‐Based Selective Closing and Opening of Anodic Alumina Nanochannels for the Growth of Nanowire Arrays Comprising Multiple Elements , 2008 .

[26]  Ji Zhou,et al.  Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods. , 2008, Optics express.

[27]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[28]  G. Wurtz,et al.  Towards nonlinear plasmonic devices based on metallic nanorods , 2008, Journal of microscopy.

[29]  Kosmas L. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[30]  Wayne Dickson,et al.  Dielectric-loaded plasmonic nanoantenna arrays: A metamaterial with tuneable optical properties , 2007 .

[31]  Wayne Dickson,et al.  Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal , 2007 .

[32]  G. Wurtz,et al.  Plasmonic Core/Shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties , 2007 .

[33]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[34]  G. Wurtz,et al.  Growth and properties of gold and nickel nanorods in thin film alumina , 2006 .

[35]  Wayne Dickson,et al.  Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing , 2006 .

[36]  P. Milman,et al.  Bell-type inequalities for cold heteronuclear molecules. , 2006, Physical review letters.

[37]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[38]  Andreas Offenhäusser,et al.  Fabrication of large-scale patterned gold-nanopillar arrays on a silicon substrate using imprinted porous alumina templates. , 2006, Small.

[39]  S. Mátéfi-Tempfli,et al.  Controlled growth of single nanowires within a supported alumina template , 2006 .

[40]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[41]  Y. Chen,et al.  Electrically controlled surface plasmon resonance frequency of gold nanorods , 2006 .

[42]  G. Wurtz,et al.  Optical bistability in nonlinear surface-plasmon polaritonic crystals. , 2006, Physical review letters.

[43]  I. Zozoulenko,et al.  Light propagation in nanorod arrays , 2006, physics/0607032.

[44]  G. Wurtz,et al.  Anisotropic optical properties of arrays of gold nanorods embedded in alumina , 2006 .

[45]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[46]  V. Podolskiy,et al.  Nanowire metamaterials with extreme optical anisotropy , 2006, physics/0604065.

[47]  M. Käll,et al.  Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles , 2006, physics/0601042.

[48]  S. Kawata,et al.  Subwavelength optical imaging through a metallic nanorod array. , 2005, Physical review letters.

[49]  A. Polman,et al.  Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains , 2005, cond-mat/0512187.

[50]  Theodore Goodson,et al.  Femtosecond excitation dynamics in gold nanospheres and nanorods , 2005 .

[51]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[52]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[53]  N. Scherer,et al.  Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation , 2005, cond-mat/0506158.

[54]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[55]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[56]  C. Peng,et al.  Fabrication of Anodic‐Alumina Films with Custom‐Designed Arrays of Nanochannels , 2005 .

[57]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[58]  Gary P. Wiederrecht,et al.  Coherent Coupling of Molecular Excitons to Electronic Polarizations of Noble Metal Nanoparticles , 2004 .

[59]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[60]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[61]  Sung Yong Park,et al.  Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation , 2004, cond-mat/0402175.

[62]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[63]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[64]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[65]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[66]  David G. Lidzey,et al.  Cavity polaritons in microcavities containing disordered organic semiconductors , 2003 .

[67]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[68]  Peter A. Hobson,et al.  Strong exciton–photon coupling in a low-Q all-metal mirror microcavity , 2002 .

[69]  Aristides A. G. Requicha,et al.  Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit , 2002, SPIE Optics + Photonics.

[70]  Thomas A. Klar,et al.  Electrically controlled light scattering with single metal nanoparticles , 2002 .

[71]  A. Zayats,et al.  Light-controlled photon tunneling , 2002, cond-mat/0205160.

[72]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[73]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[74]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[75]  M. S. Skolnick,et al.  Photon-mediated hybridization of frenkel excitons in organic semiconductor microcavities , 2000, Science.

[76]  Mona B. Mohamed,et al.  Femtosecond transient-absorption dynamics of colloidal gold nanorods: Shape independence of the electron-phonon relaxation time , 2000 .

[77]  D. Akins,et al.  Superradiant lasing from J-aggregated molecules adsorbed onto colloidal silver , 1998 .

[78]  J. Bigot,et al.  SIZE-DEPENDENT SURFACE PLASMON DYNAMICS IN METAL NANOPARTICLES , 1998, cond-mat/9805163.

[79]  N. D. Fatti,et al.  Nonequilibrium electron interactions in metal films , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[80]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[81]  Sun,et al.  Femtosecond investigation of electron thermalization in gold. , 1993, Physical review. B, Condensed matter.

[82]  John E. Sipe,et al.  Analysis of second-harmonic generation at metal surfaces , 1980 .

[83]  P. Yeh,et al.  Electromagnetic propagation in periodic stratified media. I. General theory , 1977 .

[84]  D. G. Thomas,et al.  Theoretical and Experimental Effects of Spatial Dispersion on the Optical Properties of Crystals , 1963 .

[85]  Y. Hao,et al.  Subwavelength optical imaging with an array of silver nanorods , 2011 .

[86]  Wayne Dickson,et al.  Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. , 2008, Nano letters.

[87]  G. Wurtz,et al.  FAST TRACK COMMUNICATION: Fabrication and optical properties of gold nanotube arrays , 2008 .

[88]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[89]  V. Podolskiy,et al.  Ju n 20 04 Resonant light interaction with plasmonic nanowire systems , 2004 .

[90]  Jean-Yves Bigot,et al.  Electron dynamics in metallic nanoparticles , 2000 .

[91]  V. Agranovich,et al.  Crystal Optics with Spatial Dispersion and Excitons , 1984 .

[92]  R. Gans,et al.  Über die Form ultramikroskopischer Silberteilchen , 1915 .

[93]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[94]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.