Retrieving soil surface roughness with the Hapke photometric model: Confrontation with the ground truth

Abstract Surface roughness can be defined as the mean slope angle integrated over all scales from the grain size to the local topography. It controls the energy balance of bare soils, in particular the angular distribution of scattered and emitted radiation. This provides clues to understand the intimate structure and evolution of planetary surfaces over ages. In this article we investigate the capacity of the Hapke photometric model, the most widely used in planetary science, to retrieve surface roughness from multiangular reflectance data. Its performance is still a question at issue and we lack validation experiments comparing model retrievals with ground measurements. To address this issue and to show the potentials and limits of the Hapke model, we compare the mean slope angle determined from very high resolution digital elevation models of volcanic and sedimentary terrains sampled in the Asal-Ghoubbet rift (Republic of Djibouti), to the photometric roughness estimated by model inversion on multiangular reflectance data measured on the ground (Chamelon field goniometer) and from space (Pleiades images). The agreement is good on moderately rough surfaces, in the domain of validity of the Hapke model, and poor on others.

[1]  M. Shepard,et al.  A test of the Hapke photometric model , 2007 .

[2]  Charles M. Bachmann,et al.  A next generation field-portable goniometer system , 2016, SPIE Defense + Security.

[3]  Paul Helfenstein,et al.  A laboratory study of the bidirectional reflectance from particulate samples , 2011 .

[4]  Patrick Pinet,et al.  Planetary regolith surface analogs:: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data , 2003 .

[5]  Alexei Lyapustin,et al.  Atmospheric and geometrical effects on land surface albedo , 1999 .

[6]  J. Fernando,et al.  Surface reflectance of Mars observed by CRISM/MRO: 2. Estimation of surface photometric properties in Gusev Crater and Meridiani Planum , 2013, 1303.4549.

[7]  John Furey,et al.  Laboratory goniometer approach for spectral polarimetric directionality , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[8]  Peng Gong,et al.  Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data. , 2009 .

[9]  L. Perret,et al.  PLEIADES SYSTEM ARCHITECTURE AND MAIN PERFORMANCES , 2012 .

[10]  R. Dickinson,et al.  A physical model for predicting bidirectional reflectances over bare soil , 1989 .

[11]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[12]  N. Thomas,et al.  First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE) , 2006 .

[13]  P. Helfenstein,et al.  The Opposition Effect and the Quasi-fractal Structure of Regolith: I. Theory , 2001 .

[14]  G. McTainsh,et al.  Simulating Multi-angle Imaging Spectro-Radiometer (MISR) sampling and retrieval of soil surface roughness and composition changes using a bi-directional soil spectral reflectance model , 2009 .

[15]  I. Manighetti,et al.  Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts , 2013 .

[16]  Alexei Lyapustin,et al.  Surface reflectance of Mars observed by CRISM/MRO: 1. Multi‐angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS‐ReCO) , 2013 .

[17]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[18]  S. Jacquemoud,et al.  An advanced photogrammetric method to measure surface roughness: Application to volcanic terrains in the Piton de la Fournaise, Reunion Island , 2013 .

[19]  B. Buratti,et al.  Photometric Properties of Solar System Ices , 2013 .

[20]  D. Despan,et al.  Bidirectional reflectance of rough bare soil surfaces , 1999 .

[21]  Mark S. Robinson,et al.  Resolved Hapke parameter maps of the Moon , 2014 .

[22]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .

[23]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[24]  Patrick Pinet,et al.  An experimental study of Hapke's modeling of natural granular surface samples , 2011 .

[25]  Bruce A. Campbell,et al.  Shadows on a Planetary Surface and Implications for Photometric Roughness , 1998 .

[26]  Deric J Gray,et al.  Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands. , 2015, Applied optics.

[27]  E. Rupnik,et al.  MicMac – a free, open-source solution for photogrammetry , 2017, Open Geospatial Data, Software and Standards.

[28]  M. Pierrot-Deseilligny,et al.  A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH : AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT 5-HRS STEREO IMAGERY , 2006 .

[29]  A. McEwen,et al.  Photometric properties of Mars soils analogs , 2013 .

[30]  X. Ceamanos,et al.  Characterization and mapping of surface physical properties of Mars from CRISM multi-angular data : application to Gusev Crater and Meridiani Planum , 2014, 1408.5301.

[31]  S. Jacquemoud,et al.  Surface roughness retrieval by inversion of the Hapke model: A multiscale approach , 2017 .

[32]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[33]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[34]  F. Baret,et al.  Modeling Spectral and Bidirectional Soil Reflectance , 1992 .

[35]  Joel Michelin,et al.  Soil surface roughness measurement: A new fully automatic photogrammetric approach applied to agricultural bare fields , 2017, Comput. Electron. Agric..

[36]  Mars surface phase function constrained by orbital observations , 2012, 1208.4518.

[37]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[38]  C. Pieters,et al.  Integrated Spectral Analysis of Mare Soils and Craters: Applications to Eastern Nearside Basalts , 2000 .

[39]  Ewelina Rupnik,et al.  3D reconstruction from multi-view VHR-satellite images in MicMac , 2018 .

[40]  Jerzy Cierniewski,et al.  A model for soil surface roughness influence on the spectral response of bare soils in the visible and near-infrared range , 1987 .

[41]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit: PANCAM PHOTOMETRY-SPIRIT , 2006 .

[42]  B. Hapke Bidirectional reflectance spectroscopy: 6. Effects of porosity , 2008 .

[43]  Stefan R Sandmeier,et al.  Acquisition of bidirectional reflectance factor data with field goniometers , 2000 .

[44]  M. Shepard,et al.  Testing the Hapke photometric model: Improved inversion and the porosity correction , 2011 .

[45]  David W. Graham,et al.  Prediction and measurement of soil bidirectional reflectance , 1992, IEEE Trans. Geosci. Remote. Sens..

[46]  Marcos J. Montes,et al.  Flexible field goniometer system: the Goniometer for Outdoor Portable Hyperspectral Earth Reflectance , 2016 .

[47]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[48]  Philippe Gamet,et al.  PLEIADES ABSOLUTE CALIBRATION : INFLIGHT CALIBRATION SITES AND METHODOLOGY , 2012 .

[49]  T. Zobeck,et al.  Using bi-directional soil spectral reflectance to model soil surface changes induced by rainfall and wind-tunnel abrasion , 2006 .

[50]  David A. Paige,et al.  Spectrogoniometry and modeling of martian and lunar analog samples and Apollo soils , 2013 .

[51]  Shanti Reddy,et al.  An Evaluation of the Use of Atmospheric and BRDF Correction to Standardize Landsat Data , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[52]  D. Jupp,et al.  A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain , 2012 .

[53]  J. Fernando,et al.  Realistic uncertainties on Hapke model parameters from photometric measurement , 2015, 1506.08089.

[54]  C. Pilorget,et al.  Wavelength dependence of scattering properties in the VIS–NIR and links with grain-scale physical and compositional properties , 2016 .

[55]  N. Thomas,et al.  Photometry of meteorites , 2012 .