Bayesian Phylogenetic Estimation of Clade Ages Supports Trans‐Atlantic Dispersal of Cichlid Fishes

Abstract Divergence‐time estimation based on molecular phylogenies and the fossil record has provided insights into fundamental questions of evolutionary biology. In Bayesian node dating, phylogenies are commonly time calibrated through the specification of calibration densities on nodes representing clades with known fossil occurrences. Unfortunately, the optimal shape of these calibration densities is usually unknown and they are therefore often chosen arbitrarily, which directly impacts the reliability of the resulting age estimates. As possible solutions to this problem, two nonexclusive alternative approaches have recently been developed, the “fossilized birth‐death” (FBD) model and “total‐evidence dating.” While these approaches have been shown to perform well under certain conditions, they require including all (or a random subset) of the fossils of each clade in the analysis, rather than just relying on the oldest fossils of clades. In addition, both approaches assume that fossil records of different clades in the phylogeny are all the product of the same underlying fossil sampling rate, even though this rate has been shown to differ strongly between higher level taxa. We here develop a flexible new approach to Bayesian age estimation that combines advantages of node dating and the FBD model. In our new approach, calibration densities are defined on the basis of first fossil occurrences and sampling rate estimates that can be specified separately for all clades. We verify our approach with a large number of simulated data sets, and compare its performance to that of the FBD model. We find that our approach produces reliable age estimates that are robust to model violation, on par with the FBD model. By applying our approach to a large data set including sequence data from over 1000 species of teleost fishes as well as 147 carefully selected fossil constraints, we recover a timeline of teleost diversification that is incompatible with previously assumed vicariant divergences of freshwater fishes. Our results instead provide strong evidence for transoceanic dispersal of cichlids and other groups of teleost fishes.

[1]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[2]  A. Murray Regular ArticlesThe fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei)☆ , 2001 .

[3]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[4]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[5]  D. Greenfield,et al.  Fishes of the Continental Waters of Belize , 1997 .

[6]  Daniele Silvestro,et al.  PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data , 2014 .

[7]  H. López-Fernández,et al.  On the Eocene Cichlids from the Lumbrera Formation: Additions and Implications for the Neotropical Ichthyofauna , 2014 .

[8]  M. Miya,et al.  Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences , 2008, BMC Evolutionary Biology.

[9]  C. Heine,et al.  Kinematics of the South Atlantic rift , 2013, 1301.2096.

[10]  L. Harmon,et al.  Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes , 2009, BMC Evolutionary Biology.

[11]  A. Cohen,et al.  Ecology and Evolution of the African Great Lakes and Their Faunas , 2014 .

[12]  Sudhir Kumar,et al.  The timetree of life , 2009 .

[13]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[14]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[15]  Taxonomic status of the Hispaniolan Cichlidae , 2006 .

[16]  Rachel S. G. Sealfon,et al.  Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak , 2014, Science.

[17]  W. Salzburger,et al.  A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach , 2015, Molecular phylogenetics and evolution.

[18]  J. Ali,et al.  Late Cretaceous bioconnections between Indo‐Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis , 2011 .

[19]  P David Polly,et al.  Synthesizing and databasing fossil calibrations: divergence dating and beyond , 2011, Biology Letters.

[20]  C. Papa,et al.  Sedimentological, geochemical and paleontological insights applied to continental omission surfaces: A new approach for reconstructing an eocene foreland basin in NW Argentina , 2010 .

[21]  G. Giribet,et al.  Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction , 2016, Systematic biology.

[22]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[23]  L. Malabarba,et al.  A NEW CICHLID TREMEMBICHTHYS GARCIAE (ACTINOPTERYGII, PERCIFORMES) FROM THE EOCENE-OLIGOCENE OF EASTERN BRAZIL , 2008 .

[24]  Ian Holmes,et al.  An empirical codon model for protein sequence evolution. , 2007, Molecular biology and evolution.

[25]  C. Papa,et al.  A new genus and species of Heroini (Perciformes: Cichlidae) from the early Eocene of southern South America , 2010 .

[26]  A. Murray The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei) , 2001 .

[27]  Gavin J. D. Smith,et al.  Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.

[28]  Derrick J. Zwickl,et al.  A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses , 2013, PloS one.

[29]  Tanja Stadler,et al.  Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins , 2015, Systematic biology.

[30]  K. Uchida,et al.  Excellent Salinity Tolerance of Mozambique Tilapia (Oreochromis mossambicus): Elevated Chloride Cell Activity in the Branchial and Opercular Epithelia of the Fish Adapted to Concentrated Seawater , 2000 .

[31]  S. Tavaré,et al.  Using the fossil record to estimate the age of the last common ancestor of extant primates , 2002, Nature.

[32]  Jeffrey P. Townsend,et al.  A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing , 2016, Nature.

[33]  A. Rodrigo,et al.  Measurably evolving populations , 2003 .

[34]  S. Bonhoeffer,et al.  Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) , 2012, Proceedings of the National Academy of Sciences.

[35]  W. Brown,et al.  Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Wainwright,et al.  Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes , 2013, Proceedings of the National Academy of Sciences.

[37]  L. Orgel,et al.  Biochemical Evolution , 1971, Nature.

[38]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[39]  Samuel T. Turvey,et al.  Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates , 2015, Nature.

[40]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[41]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[42]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[43]  C. Marshall A Simple Method for Bracketing Absolute Divergence Times on Molecular Phylogenies Using Multiple Fossil Calibration Points , 2008, The American Naturalist.

[44]  G. Ortí,et al.  An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). , 2015, Molecular phylogenetics and evolution.

[45]  D M Raup,et al.  Fossil preservation and the stratigraphic ranges of taxa , 1996, Paleobiology.

[46]  David Bryant,et al.  Continuous and tractable models for the variation of evolutionary rates. , 2006, Mathematical biosciences.

[47]  J. Sepkoski,et al.  Absolute measures of the completeness of the fossil record , 1999, Nature.

[48]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[49]  G. Myers Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems , 1949 .

[50]  M. Donoghue,et al.  FRUIT EVOLUTION AND DIVERSIFICATION IN CAMPANULID ANGIOSPERMS , 2013, Evolution; international journal of organic evolution.

[51]  J. Cracraft,et al.  A new time tree reveals Earth history’s imprint on the evolution of modern birds , 2015, Science Advances.

[52]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[53]  S. Tavaré,et al.  Dating primate divergences through an integrated analysis of palaeontological and molecular data. , 2011, Systematic biology.

[54]  D. Bryant,et al.  A general comparison of relaxed molecular clock models. , 2007, Molecular biology and evolution.

[55]  Alessandro Vullo,et al.  Ensembl 2015 , 2014, Nucleic Acids Res..

[56]  C. D. Hulsey,et al.  Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting , 2013, Proceedings of the Royal Society B: Biological Sciences.

[57]  Vincent M. Sarich,et al.  Immunological Time Scale for Hominid Evolution , 1967, Science.

[58]  J. Ali,et al.  Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma) , 2008 .

[59]  M. Vences,et al.  Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar , 2001 .

[60]  Stephen A. Smith,et al.  Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation , 2013, Nature Communications.

[61]  David M. Raup,et al.  Principles Of Paleontology , 1978 .

[62]  A. Peterson,et al.  CALIBRATING DIVERGENCE TIMES ON SPECIES TREES VERSUS GENE TREES: IMPLICATIONS FOR SPECIATION HISTORY OF APHELOCOMA JAYS , 2011, Evolution; international journal of organic evolution.

[63]  N. Galtier,et al.  Strong variations of mitochondrial mutation rate across mammals--the longevity hypothesis. , 2007, Molecular biology and evolution.

[64]  Michael J. Benton,et al.  The fossil record 2 , 1993 .

[65]  J. Sparks,et al.  Phylogeny, taxonomy, and evolution of Neotropical cichlids (Teleostei: Cichlidae: Cichlinae) , 2008 .

[66]  F. Bisby,et al.  Species 2000 & ITIS Catalogue of Life , 2010 .

[67]  G. Sella,et al.  Life history effects on the molecular clock of autosomes and sex chromosomes , 2015, Proceedings of the National Academy of Sciences.

[68]  A. Murray EOCENE CICHLID FISHES FROM TANZANIA, EAST AFRICA , 2001 .

[69]  Ziheng Yang,et al.  Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales , 2015, Current Biology.

[70]  D. Conkel Cichlids of North and Central America , 1993 .

[71]  Tanja Stadler,et al.  Inferring speciation and extinction rates under different sampling schemes. , 2011, Molecular biology and evolution.

[72]  D. Tautz,et al.  The root of the East African cichlid radiations , 2009, BMC Evolutionary Biology.

[73]  David L. Dilcher,et al.  The fossil record , 1992 .

[74]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[75]  Philip L. F. Johnson,et al.  Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse , 2013, Nature.

[76]  J. Huelsenbeck,et al.  The fossilized birth–death process for coherent calibration of divergence-time estimates , 2013, Proceedings of the National Academy of Sciences.

[77]  Hernán López-Fernández,et al.  Multilocus phylogeny and rapid radiations in Neotropical cichlid fishes (Perciformes: Cichlidae: Cichlinae). , 2010, Molecular phylogenetics and evolution.

[78]  T. Stadler Sampling-through-time in birth-death trees. , 2010, Journal of theoretical biology.

[79]  Sergei L. Kosakovsky Pond,et al.  Detecting Individual Sites Subject to Episodic Diversifying Selection , 2012, PLoS genetics.

[80]  B. Bomfleur,et al.  Using more than the oldest fossils: dating osmundaceae with three Bayesian clock approaches. , 2015, Systematic biology.

[81]  M. dos Reis,et al.  Dating Tips for Divergence-Time Estimation. , 2015, Trends in genetics : TIG.

[82]  Nicole Fruehauf,et al.  Principles Of Paleontology , 2016 .

[83]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[84]  L. H. Liow,et al.  How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[85]  P. Chakrabarty Cichlid biogeography: comment and review , 2004 .

[86]  C. Papa,et al.  Gymnogeophagus eocenicus, n. sp. (Perciformes: Cichlidae), an Eocene Cichlid from the Lumbrera Formation in Argentina , 2010 .

[87]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[88]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[89]  Remco Bouckaert,et al.  Evolutionary Rates and Hbv: Issues of Rate Estimation with Bayesian Molecular Methods , 2013, Antiviral therapy.

[90]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Penny,et al.  The modern molecular clock , 2003, Nature Reviews Genetics.

[92]  F. Ronquist,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Total-evidence Dating under the Fossilized Birth–death Process , 2022 .

[93]  Alexandros Stamatakis,et al.  Hybrid MPI/Pthreads parallelization of the RAxML phylogenetics code , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).

[94]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[95]  Alison M. Murray The oldest fossil cichlids (Teleostei: Perciformes): indication of a 45 million-year-old species flock , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[96]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[97]  T. Stadler,et al.  Estimating speciation and extinction rates for phylogenies of higher taxa. , 2013, Systematic biology.

[98]  M. C. Malabarba,et al.  PROTEROCARA ARGENTINA, A NEW FOSSIL CICHLID FROM THE LUMBRERA FORMATION, EOCENE OF ARGENTINA , 2006 .

[99]  Alexei J. Drummond,et al.  Calibrated Birth–Death Phylogenetic Time-Tree Priors for Bayesian Inference , 2013, Systematic biology.

[100]  W. Salzburger,et al.  Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes , 2015, Journal of evolutionary biology.

[101]  Chad D. Brock,et al.  Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates , 2009, Proceedings of the National Academy of Sciences.

[102]  J. Sepkoski,et al.  Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. , 1999, Science.

[103]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[104]  J. Sparks,et al.  Freshwater fishes, dispersal ability, and nonevidence: "gondwana life rafts" to the rescue. , 2005, Systematic biology.

[105]  J. Sparks,et al.  Temporal Patterns of Diversification across Global Cichlid Biodiversity (Acanthomorpha: Cichlidae) , 2013, PloS one.

[106]  Ziheng Yang,et al.  The Timetree of Life , 2010 .

[107]  D. Hillis,et al.  Modeling Character Change Heterogeneity in Phylogenetic Analyses of Morphology through the Use of Priors. , 2016, Systematic biology.

[108]  J. Sparks,et al.  Phylogeny and biogeography of cichlid fishes (Teleostei: Perciformes: Cichlidae) , 2004, Cladistics : the international journal of the Willi Hennig Society.

[109]  D. Rabosky Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees , 2014, PloS one.

[110]  Tanja Stadler,et al.  Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration , 2014, PLoS Comput. Biol..

[111]  Tanja Stadler,et al.  Mammalian phylogeny reveals recent diversification rate shifts , 2011, Proceedings of the National Academy of Sciences.

[112]  F. Ronquist,et al.  A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology , 2015, Systematic biology.

[113]  M. G. Vucetich Mamíferos continentales del Paleógeno argentino las investigaciones de los últimos cincuenta años , 2007 .

[114]  G. Turner,et al.  Age of cichlids: new dates for ancient lake fish radiations. , 2007, Molecular biology and evolution.

[115]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[116]  R. Stickney Tilapia Tolerance of Saline Waters: A Review , 1986 .

[117]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[118]  M. Suchard,et al.  The early spread and epidemic ignition of HIV-1 in human populations , 2014, Science.

[119]  Michael S. Y. Lee,et al.  Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[120]  J. Vinther,et al.  Constraints on the timescale of animal evolutionary history , 2015 .

[121]  Félix Forest,et al.  Calibrating the Tree of Life: fossils, molecules and evolutionary timescales. , 2009, Annals of botany.