A sharp error bound of the approximate solutions for saddle point linear systems

Sharp error estimations for numerical solutions of saddle point linear systems are presented. Based on these estimations, fast algorithms for computing error bounds of the numerical solutions are proposed. The error bounds obtained by these algorithms are "verified" in the sense that all the possible rounding errors have been taken into account. Techniques for accelerating the computation and obtaining smaller error bounds are introduced. Numerical results show the properties of the proposed algorithms.

[1]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[2]  Siegfried M. Rump,et al.  Fast verification of solutions of matrix equations , 2002, Numerische Mathematik.

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[5]  Xiaojun Chen,et al.  Validated Solutions of Saddle Point Linear Systems , 2008, SIAM J. Matrix Anal. Appl..

[6]  Hans-Robert Arndt,et al.  On Interval Systems [x] = [A][x] + [b] and the Powers of Interval Matrices in Complex Interval Arithmetics , 2007, Reliab. Comput..

[7]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[8]  Jun Zou,et al.  An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..

[9]  Siegfried M. Rump Verified Bounds for Least Squares Problems and Underdetermined Linear Systems , 2012, SIAM J. Matrix Anal. Appl..

[10]  Xiaojun Chen,et al.  Numerical validation of solutions of saddle point matrix equations , 2003, Numer. Linear Algebra Appl..

[11]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[12]  Siegfried M. Rump,et al.  Fast Verification for All Eigenpairs in Symmetric Positive Definite Generalized Eigenvalue Problems , 2010, Reliab. Comput..

[13]  Kouji Hashimoto,et al.  A preconditioned method for saddle point problems , 2007 .

[14]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[15]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .